Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087801    DOI: 10.1088/1674-1056/20/8/087801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Microstructured hydroxyl environments and Raman spectroscopy in selected basic transition-metal halides

Liu Xiao-Dong(刘晓东)a)b)† , Meng Dong-Dong(孟冬冬)a), Hagihala Masato(萩原雅人)a), and Zheng Xu-Guang(郑旭光)a)c)
aDepartment of Physics, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan; b Department of Physics, College of Science, Tianjin Polytechnic University, Tianjin 300160, China; c Department of Physics, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
Abstract  Raman vibrational spectra of the selected basic (hydroxyl OH and deuteroxyl OD) transition-metal halides, geometrically frustrated material series $\alpha $-, $\beta $-, $\gamma $-Cu$_{2}$(OH)$_{3}$Cl,  $\alpha $-Cu$_{2}$(OH)$_{3}$Br, $\beta $-Ni$_{2}$(OH)$_{3}$Cl, $\beta $-Co$_{2}$(OH)$_{3}$Cl, $\beta $-Co$_{2}$(OH)$_{3}$Br, $\gamma $-Cu$_{2}$(OD)$_{3}$Cl, and $\beta $-Co$_{2}$(OD)$_{3}$Cl are measured at room  temperature and analysed to investigate the relationship between the microstructured OH environments and their respective Raman spectra. Among these selected samples, the last two are used to determine the OH stretching  vibration region (3600 cm$^{-1}$--3300 cm$^{{-}1}$) and OH bending vibration  region (1000 cm$^{-1}$--600 cm$^{-1}$) of OH systems in the spectra. Through the comparative analysis of the distances $d$(metal--O),  $d$(O--halogen), and $d$(OH), the strong metal--O interaction and trimeric hydrogen bond ($C_{3v}$, $C_{s}$ or $C_{1}$ symmetry) are found in every material, but both determine simultaneously an ultimate $d$(OH), and therefore  an OH stretching vibration frequency. According to the approximately linear relationship between the OH stretching vibration frequency and $d$(OH), some unavailable $d$(OH) are guessed and some doubtful $d$(OH) are suggested  to be corrected. In addition, it is demonstrated in brief that the OH bending vibration frequency  is also of importance to check the more detailed crystal microstructure relating to the OH group.
Keywords:  hydroxyl      trimeric hydrogen bond      Raman spectrum      basic transition-metal halide  
Received:  24 January 2011      Revised:  14 February 2011      Accepted manuscript online: 
PACS:  78.30.-j (Infrared and Raman spectra)  
  33.20.Ea (Infrared spectra)  
  61.66.Fn (Inorganic compounds)  
  61.12.-q  
Fund: Project supported by the Grant-in-Aid for Scientific Research on Priority Area from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Grant No. Tokutei 22014008).

Cite this article: 

Liu Xiao-Dong(刘晓东), Meng Dong-Dong(孟冬冬), Hagihala Masato(萩原雅人), and Zheng Xu-Guang(郑旭光) Microstructured hydroxyl environments and Raman spectroscopy in selected basic transition-metal halides 2011 Chin. Phys. B 20 087801

[1] Buckingham A D, Del Bene J E and McDowell S A C 2008 Chem. Phys. Lett. 463 1
[2] Arunan E 2007 Curr. Sci. 92 17
[3] Gilli G and Gilli P 2000 J. Mol. Struc. 552 1
[4] Barnes A J 2004 J. Mol. Struc. 704 3
[5] Novak A 1974 Struc. Bond. 18 177
[6] Mikenda W 1986 J. Mol. Struc. 147 1
[7] Beckenkamp K and Lutz H D 1992 J. Mol. Struc. 270 393
[8] Schmidt M and Lutz H D 1993 Phys. Chem. Minerals 20 27
[9] Subramanian S and Zaworotko M J 1994 Coord. Chem. Rev. 137 357
[10] Lutz H D, Mdller H and Schmidt M 1994 J. Mol. Struc. 328 121
[11] Lutz H D 1995 Struc. Bond. 82 85
[12] Libowitzky E 1999 Monatsh. Chem. 130 1047
[13] Mortel R and Lutz H D 2003 J. Mol. Struc. 648 171
[14] Hase Y 2006 J. Braz. Chem. Soc. 17 741
[15] Zheng X G and Otabe E S 2004 Solid State Commun. 130 107
[16] Zheng X G and Xu C N 2004 Solid State Commun. 131 509
[17] Zheng X G, Kawae T, Kashitani Y, Li C S, Tateiwa N, Takeda K, Yamada H, Xu C N and Ren Y 2005 Phys. Rev. B 71 052409
[18] Zheng X G, Mori T, Nishiyama K, Higemoto W, Yamada H, Nishikubo K and Xu C N 2005 Phys. Rev. B 71 174404
[19] Zheng X G, Kubozono H, Nishiyama K, Higemoto W, Kawae T, Koda A and Xu C N 2005 Phys. Rev. Lett. 95 057201
[20] Zheng X G and Nishiyama K 2006 Physica B 374—375 156
[21] Zheng X G, Kawae T, Yamada H, Nishiyama K and Xu C N 2006 Phys. Rev. Lett. 97 247204
[22] Hagihala M, Zheng X G, Toriyi T and Kawae T 2007 J. Phys.: Condens. Matter 19 145281
[23] Zheng X G, Hagihala M, Toriyi T 2007 J. Magn. Magn. Mater. 310 1288
[24] Zheng X G, Hagihala M, Kawae T and Xu C N 2008 Phys. Rev. B 77 024418
[25] Hagihala M, Zheng X G and Kawae T 2009 Physica B 404 671
[26] Fujihala M, Hagihala M, Zheng X G and Kawae T 2009 Physica B 404 674
[27] Zheng X G, Hagihala M, Nishiyama K and Kawae T 2009 Physica B 404 677
[28] Zheng X G, Yamashita T, Hagihala M, Fujihala M and Kawae T 2009 Physica B 404 680
[29] Zheng X G, Hagihala M, Fujihala M and Kawae T 2009 J. Phys.: Conf. Ser. 145 012034
[30] Fujihala M, Hagihala M, Zheng X G and Kawae T 2010 Phys. Rev. B 82 024425
[31] Kim J H, Ji S, Lee S H, Lake B, Yildirim T, Nojiri H, Kikuchi H, Habicht K, Qiu Y and Kiefer K 2008 Phys. Rev. Lett. 101 107201
[32] Wills A S and Henry J Y 2008 J. Phys.: Condens. Matter 20 472206
[33] Wills A S, Perring T G, Raymond S, Fak B, Henry J Y and Telling M 2009 J. Phys: Conf. Ser. 145 012056
[34] Kubo H, Zenmyo K, Tokita M, Hamasaki T, Hagihala M and Zheng X G 2008 J. Phys. Soc. Jpn. 77 013407
[35] Tokita M and Zenmyo K 2009 J. Phys.: Conf. Ser. 150 042208
[36] Maegawa S, Oyamada A, Sato S, Nishiyama M, Itou T and Zheng X G 2009 J. Phys.: Conf. Ser. 145 012018
[37] Maegawa S, Oyamada A and Sato S 2010 J. Phys. Soc. Jpn. 79 011002
[38] Martens W, Frost R L and Williams P A 2003 N. Jb. Miner. Abh. 178 197
[39] Frost R L, Martens W, Kloprogge J T and Williams P A 2003 J. Raman Spectrosc. 33 801
[40] Frost R L 2003 Spectrochimica Acta Part A 59 1195
[41] Macalik L, Maczka M, Solarz P, Fuentes A F, Matsuhira K and Hiroi Z 2009 Opt. Mater. 31 790
[42] Maczka M, Sanjuan M L, Fuentes A F, Macalik L, Hanuza J, Matsuhira K and Hiroi Z 2009 Phys. Rev. B 79 214437
[43] Ionic Radius Wikipedia, the Free Encyclopedia http://en.wikipedia.org/wiki/Ionic radius [2011-1-25]
[44] Liu X D, Hagihala M, Zheng X G, Tao W J, Meng D D, Zhang S L and Guo Q X 2011 Chin. Phys. Lett. 28 017803
[45] Liu X D, Tao W J, Zheng X G, Hagihala M, Meng D D and Guo Q X 2011 Acta Phys. Sin. 60 037803 (in Chinese)
[46] Liu X D, Hagihala M, Zheng X G and Guo Q X 2011 Chin. Phys. B 20 077801
[47] Liu X D, Hagihala M, Zheng X G and Guo Q X 2011 Vibrat. Spectrosc. 56 177
[48] Nakamoto K 2009 Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry 6th edn. (New York: John Wiley & Sons)
[49] Nakamoto K 2009 Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry 6th edn. (New York: John Wiley & Sons)
[50] Ergun H B, Gehring K A and Gehring G A 1976 J. Phys. C: Solid State Phys. 9 1101
[51] Lagaron J M 2002 Macromol. Symp. 184 19
[1] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[2] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
[3] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[4] Phase transition and near-zero thermal expansion of Zr0.5Hf0.5VPO7
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Sai-Lei Li(李赛磊), Yan-Jun Ji(纪延俊), Wen-Ying Mu(穆文英), Wei-Wei Feng(冯伟伟), Gao-Jie Zeng(曾高杰), You-Wen Liu(刘友文), Er-Jun Liang(梁二军). Chin. Phys. B, 2018, 27(6): 066501.
[5] Effect of hydroxyl on dye-sensitized solar cells assembled with TiO2 nanorods
Lijian Meng(孟立建), Tao Yang(杨涛), Sining Yun(云斯宁), Can Li(李灿). Chin. Phys. B, 2018, 27(1): 016802.
[6] Raman spectrum study of δ -doped GaAs/AlAs multiple-quantum wells
Wei-Min Zheng(郑卫民), Wei-Yan Cong(丛伟艳), Su-Mei Li(李素梅), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2018, 27(1): 017302.
[7] Near-zero thermal expansion of In2(1-x)(HfMg)xMo3O12 with tailored phase transition
Yong-Guang Cheng(程永光), Yan-Chao Mao(毛彦超), Xain-Sheng Liu(刘献省), Bao-He Yuan(袁保合), Ming-Ju Chao(晁明举), Er-Jun Liang(梁二军). Chin. Phys. B, 2016, 25(8): 086501.
[8] Numerical analysis of quantitative measurement of hydroxyl radical concentration using laser-induced fluorescence in flame
Shuang Chen(陈爽), Tie Su(苏铁), Yao-Bang Zheng(郑尧邦), Li Chen(陈力), Ting-Xu Liu(刘亭序), Ren-Bing Li(李仁兵), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(6): 060703.
[9] Vibrational features of confined water in nanoporous TiO2 by Raman spectra
Xin Gao(高欣), Qiang Wang(王强), Gang Sun(孙刚), Chen-Xi Li(李晨曦), Lin Hu(胡林). Chin. Phys. B, 2016, 25(2): 026801.
[10] Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy
Shuang Chen(陈爽), Tie Su(苏铁), Zhong-Shan Li(李中山), Han-Chen Bai(白菡尘), Bo Yan(闫博), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(10): 100701.
[11] Strain analysis of free-standing strained silicon-on-insulator nanomembrane
Sun Gao-Di (孙高迪), Dong Lin-Xi (董林玺), Xue Zhong-Ying (薛忠营), Chen Da (陈达), Guo Qing-Lei (郭庆磊), Mu Zhi-Qiang (母志强). Chin. Phys. B, 2015, 24(3): 036801.
[12] Quantitative measurements of one-dimensional OH absolute concentration profiles in a methane/air flat flame by bi-directional laser-induced fluorescence
Yu Xin (于欣), Yang Zhen (杨振), Peng Jiang-Bo (彭江波), Zhang Lei (张蕾), Ma Yu-Fei (马欲飞), Yang Chao-Bo (杨超博), Li Xiao-Hui (李晓晖), Sun Rui (孙锐). Chin. Phys. B, 2015, 24(11): 114204.
[13] Damage mechanism of hydroxyl radicals toward adenine–thymine base pair
Tan Rong-Ri (谈荣日), Wang Dong-Qi (王东琪), Zhang Feng-Shou (张丰收). Chin. Phys. B, 2014, 23(2): 027103.
[14] Synthesis, structure, optical, and electric properties of Ce-doped CuInTe2 compound
Fu Li (付丽), Guo Yong-Quan (郭永权). Chin. Phys. B, 2014, 23(12): 127801.
[15] The effect of anti-hydrogen bond on Fermi resonance: A Raman spectroscopic study of the Fermi doublet ν1ν12 of liquid pyridine
Li Dong-Fei (李东飞), Gao Shu-Qin (高淑琴), Sun Cheng-Lin (孙成林), Li Zuo-Wei (里佐威 ). Chin. Phys. B, 2012, 21(8): 083301.
No Suggested Reading articles found!