Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 114204    DOI: 10.1088/1674-1056/24/11/114204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantitative measurements of one-dimensional OH absolute concentration profiles in a methane/air flat flame by bi-directional laser-induced fluorescence

Yu Xin (于欣)a b, Yang Zhen (杨振)a b, Peng Jiang-Bo (彭江波)a b, Zhang Lei (张蕾)c, Ma Yu-Fei (马欲飞)a b, Yang Chao-Bo (杨超博)a b, Li Xiao-Hui (李晓晖)a b, Sun Rui (孙锐)c
a National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China;
b Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150080, China;
c School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract  The one-dimensional (1D) spatial distributions of OH absolute concentration in methane/air laminar premixed flat flame under different equivalence ratios at atmospheric pressure are investigated by using bi-directional laser-induced fluorescence (LIF) detection scheme combined with the direct absorption spectroscopy. The effective peak absorption cross section and the average temperature at a height of 2 mm above the burner are obtained by exciting absorption on the Q1(8) rotational line in the m A2Σ+ (v’= 0) ≤←X2Π (v"= 0) at 309.240 nm. The measured values are 1.86×10-15 cm2 and 1719 K, respectively. Spatial filtering and frequency filtering methods of reducing noise are used to deal with the experimental data, and the smoothing effects are also compared using the two methods. The spatial distribution regularities of OH concentration are obtained with the equivalence ratios ranging from 0.8 to 1.3. The spatial resolution of the measured result is 84 μm. Finally, a comparison is made between the experimental result of this paper and other relevant study results.
Keywords:  bi-directional laser-induced fluorescence      laminar premixed flat flame      hydroxyl radical absolute concentration  
Received:  24 March 2015      Revised:  27 May 2015      Accepted manuscript online: 
PACS:  42.62.-b (Laser applications)  
  82.40.-g (Chemical kinetics and reactions: special regimes and techniques)  
Fund: Project supported by the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 2012YQ040164), the National Natural Science Foundation of China (Grant Nos. 61275127 and 91441130), the China Postdoctoral Science Foundation (Grant No. 2014M560262), and the Postdoctoral Fellowship in Heilongjiang Province, China (Grant No. LBH-Z14074).
Corresponding Authors:  Yu Xin, Yang Zhen     E-mail:  yuxin030685@163.com;sailoryz@163.com

Cite this article: 

Yu Xin (于欣), Yang Zhen (杨振), Peng Jiang-Bo (彭江波), Zhang Lei (张蕾), Ma Yu-Fei (马欲飞), Yang Chao-Bo (杨超博), Li Xiao-Hui (李晓晖), Sun Rui (孙锐) Quantitative measurements of one-dimensional OH absolute concentration profiles in a methane/air flat flame by bi-directional laser-induced fluorescence 2015 Chin. Phys. B 24 114204

[1] Konse-Höinghaus K;1994 Prog. Energ. Combust. Sci. 20 203
[2] Arnold A, Bombach R, Käppeli B and Schlegel A;1997 Appl. Phys. B 64 579
[3] Kelman J B and Masri A R;1997 Appl. Opt. 36 3506
[4] Chao Y C, Wu D C and Cheng T S;2000 Opt. Eng. 39 1441
[5] Zhang J Y, Venkatesan K K, King G B, Laurendeau N M and Renfro M W;2005 Opt. Lett. 30 3144
[6] Vaidyanathan A, Gustavsson J and Segal C;2009 J. Propul. Power 25 864
[7] Fredette C F 2009 Quantitative Hydroxyl (OH) Concentration Calibration by Use of a Flat Flame Burner, Thermocouple and Planar Laser Induced Fluorescence (PLIF) System (MS Dissertation) (Boston: Northeastern University)
[8] Heinze J, Meier U, Behrendt T, Willert C, Geigle K P, Lammel O, and Lückerath R;2011 Z. Phys. Chem. 225 1315
[9] Matynia A, Idir M, Molet J, Roche C, de Persis S and Pillier L;2012 Appl. Phys. B 108 393
[10] Paul P H, Durant J L, Gray J A and Furlanetto M R;1995 J. Chem. Phys. 102 8378
[11] Tamura M, Berg P A, Harrington J E, Luque J, Jeffries J B, Smith G P and Crosley D R;1998 Combust. Flame 114 502
[12] Heard D E and Henderson D A;2000 Phys. Chem. Chem. Phys. 2 67
[13] Steffens K L and Crosley D R;2000 J. Chem. Phys. 112 9427
[14] Brockhinke A and Kohse-Höinghaus K;2002 Faraday Discuss. 119 275
[15] Mercier X, Jamette P, Pauwels J F and Desgroux P;1999 Chem. Phys. Lett. 305 334
[16] Barry H R, Bakowski B, Corner L, Freegarde T, Hawkins O T W, Hancock G, Jacobs R M J, Peverall R and Ritchie G A D;2000 Chem. Phys. Lett. 319 125
[17] Battles B E 1994 Quantitative Fluorescence Measurements of Nitric Oxide and the Hydroxyl Radical in High Pressure Methane Flames (Ph.D. Dissertation) (Stanford: Stanford University)
[18] Oh D B;1995 Opt. Lett. 20 100
[19] Mercier X, Therssen E, Pauwels J F and Desgroux P;1999 Chem. Phys. Lett. 299 75
[20] Schocker A, Brockhinke A, Bultitude K and Ewart P;2003 Appl. Phys. B 77 101
[21] Cheskis S;1999 Prog. Energ. Combust. Sci. 25 233
[22] Wang Y H, Peng Y J, He X, Song Y F and Yang Y Q;2009 Chin. Phys. B 18 1463
[23] Han Y, Cai G B, Xu X, Renou B and Boukhalfa A;2014 Chin. Phys. B 23 058901
[24] Versluis M, Georgiev N, Martinsson L, Aldén M and Kröll S;1997 Appl. Phys. B 65 411
[25] Brackmann C, Bood J, Aldén M, Pengloan G and Andersson Ö;2006 Combust. Sci. Technol. 178 1165
[26] Tian K, Li Z S, Staude S, Li B, Sun Z W, Lantz A, Aldén M and Atakan B;2009 Proc. Combust. Inst. 32 445
[27] McGee T J and Mcllrath T J;1984 J. Quant. Spectrosc. Radiat. Transfer 32 179
[28] Anketell J and Pery- Thorne A;1967 Proc. Roy. Soc. A 301 343
[29] Wang N 2009 The Research and Application of Quantitative Measuring Concentration of OH by PLIF Technique (MS Dissertation) (Changsha: National University of Defense Technology) (in Chinese)
[30] Luque J and Crosley D R 1999 LIFBASE: Database and Spectral Simulation Program (Version 2.1) SRI International Report MP-99-009
[31] Zhang Y L 2014 Study on the CH4 /O2/N2 Flame Temperature and OH Radical Concentration by Ultra-Violet Absorption Spectroscopy (MS Dissertation) (Harbin: Harbin Institute of Technology) (in Chinese)
[32] Hartung G, Hult J and Kaminski C F;2006 Meas. Sci. Technol. 17 2485
[33] Wang W B 2009 Investigation on Resonant Degenerate Four Wave Mixing Technique and its Application in Gas-Media Spectroscopy (Ph. D. Dissertation) (Harbin: Harbin Institute of Technology) (in Chinese)
[34] Bechtel J H and Teets R E;1979 Appl. Opt. 18 4138
[1] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[2] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[3] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[4] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[5] Cascaded optical frequency transfer over 500-km fiber link using regenerative amplifier
Xue Deng(邓雪), Dong-Dong Jiao(焦东东), Jie Liu(刘杰), Qi Zang(臧琦), Xiang Zhang(张翔), Dan Wang(王丹), Jing Gao(高静), Rui-Fang Dong(董瑞芳), Tao Liu(刘涛), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(5): 054205.
[6] Macadam's theory in RGB laser display
Guan Wang(王贯), Yuhua Yang(杨雨桦), Tianhao Dong(董天浩), Chun Gu(顾春), Lixin Xu(许立新), Zhongcan Ouyang(欧阳钟灿), Zuyan Xu(许祖彦). Chin. Phys. B, 2019, 28(6): 064209.
[7] Hydrogen sulphide detection using near-infrared diode laser and compact dense-pattern multipass cell
Xing Tian(田兴), Yuan Cao(曹渊), Jia-Jin Chen(陈家金), Kun Liu(刘锟), Gui-Shi Wang(王贵师), Xiao-Ming Gao(高晓明). Chin. Phys. B, 2019, 28(6): 063301.
[8] An improved arctangent algorithm based on phase-locked loop for heterodyne detection system
Chun-Hui Yan(晏春回), Ting-Feng Wang(王挺峰), Yuan-Yang Li(李远洋), Tao Lv(吕韬), Shi-Song Wu(吴世松). Chin. Phys. B, 2019, 28(3): 030701.
[9] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[10] Novel inspection of welded joint microstructure using magneto-optical imaging technology
Xiang-dong Gao(高向东), Zheng-wen Li(李正文), De-yong You(游德勇), Seiji Katayama. Chin. Phys. B, 2017, 26(5): 054214.
[11] Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy
Shuang Chen(陈爽), Tie Su(苏铁), Zhong-Shan Li(李中山), Han-Chen Bai(白菡尘), Bo Yan(闫博), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(10): 100701.
[12] Spectroscopy system based on a single quantum cascade laser for simultaneous detection of CO and CO2
Min Wei(魏敏), Qing-Hao Ye(叶擎昊), Rui-Feng Kan(阚瑞峰), Bing Chen(陈兵), Chen-Guang Yang(杨晨光), Zhen-Yu Xu(许振宇), Xiang Chen(陈祥), Jun Ruan(阮俊), Xue-Li Fan(范雪丽), Wei Wang(王薇), Mai Hu(胡迈), Jian-Guo Liu(刘建国). Chin. Phys. B, 2016, 25(9): 094210.
[13] Locating the position of objects in non-line-of-sight based on time delay estimation
Xue-Feng Wang(王雪峰), Yuan-Qing Wang(王元庆), Jin-Shan Su(苏金善), Xing-Yu Yang(杨兴雨). Chin. Phys. B, 2016, 25(8): 084203.
[14] How to detect melting in laser heating diamond anvil cell
Liuxiang Yang(杨留响). Chin. Phys. B, 2016, 25(7): 076201.
[15] Numerical analysis of quantitative measurement of hydroxyl radical concentration using laser-induced fluorescence in flame
Shuang Chen(陈爽), Tie Su(苏铁), Yao-Bang Zheng(郑尧邦), Li Chen(陈力), Ting-Xu Liu(刘亭序), Ren-Bing Li(李仁兵), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(6): 060703.
No Suggested Reading articles found!