|
|
Ionizations and fragmentations of benzene, methylbenzene, and chlorobenzene in strong IR and UV laser fields |
Zhang Jun-Feng (张军峰)a b, Lü Hang (吕航)a b, Zuo Wan-Long (左万龙)a b, Xu Hai-Feng (徐海峰)a b, Jin Ming-Xing (金明星)a b, Ding Da-Jun (丁大军)a b |
a Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; b Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China |
|
|
Abstract Ionizations and fragmentations of benzene, methylbenzene, and chlorobenzene are studied in linearly polarized 50-fs, 800-nm and 400-nm strong laser fields using a time-of-flight mass spectrometer. It is shown that at low laser intensity, the parent ions are dominant for any one of the molecules in an 800-nm strong laser field, while extensive fragmentation is observed in a 400-nm laser field, which can be understood by the resonant photon absorption of molecular cations. The ratio of the yield of the parent ion to the yield of the total ion for each molecule is measured as a function of laser intensity in a range from 1.0×1013 W/cm2 to 4.0×1014 W/cm2, in either the 800-nm or 400-nm laser field. The results show that the fragmentation of the aromatic molecules increases significantly as the laser intensity is increased. Possible mechanisms for fragmentation in strong laser fields are discussed. Finally, the saturation intensity of ionization of the titled molecules is also determined.
|
Received: 19 May 2015
Revised: 05 July 2015
Accepted manuscript online:
|
PACS:
|
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grant No. 11274140). |
Corresponding Authors:
Lü Hang, Xu Hai-Feng
E-mail: lvhang0811@sina.com;xuhf@jlu.edu.cn
|
Cite this article:
Zhang Jun-Feng (张军峰), Lü Hang (吕航), Zuo Wan-Long (左万龙), Xu Hai-Feng (徐海峰), Jin Ming-Xing (金明星), Ding Da-Jun (丁大军) Ionizations and fragmentations of benzene, methylbenzene, and chlorobenzene in strong IR and UV laser fields 2015 Chin. Phys. B 24 113301
|
[1] Eichmann U, Dörr M, Maeda H, Becker W and Sandner W;2000 Phys. Rev. Lett. 84 3550 [2] Watson J B, Sanpera A, Lappas D G, Knight P L and Burnett K;1997 Phys. Rev. Lett. 78 1884 [3] Sheehy B, Lafon R, Widmer M, Walker B and DiMauro L F;1998 Phys. Rev. A 58 3942 [4] Lafon R, Chaloupka J L, Sheehy B, Paul P M, Agostini P, Kulander K C and DiMauro L F;2001 Phys. Rev. Lett. 86 2762 [5] Liu X and De Faria C F M;2004 Phys. Rev. Lett. 92 133006 [6] Eremina E, Liu X, Rottke H, Sandner W, Dreischuh A, Paulus G G, Walther H, Moshammer R and Ullrich J;2004 Phys. Rev. Lett. 92 173001 [7] Wang Y, Zhang S, Wei Z and Zhang B;2008 J. Phys. Chem. A 112 3846 [8] Bocharova I, Karimi R, Penka E F, Brichta J P, Lassonde P, Fu X, Kieffer J C, Bandrauk A D, Litvinyuk I, Sanderson J and Légare F;2011 Phys. Rev. Lett. 107 63201 [9] Yao J, Li G, Jia X, Hao X L, Zeng B, Jing C, Chu W, Ni J, Zhang H, Xie H, Zhang C, Zhao Z, Chen J, Liu X, Cheng Y and Xu Z;2013 Phys. Rev. Lett. 111 133001 [10] Abu-Samha M and Madsen L B;2009 Phys. Rev. A 80 23401 [11] Petretti S, Vanne Y V, Saenz A, Castro A and Decleva P;2010 Phys. Rev. Lett. 104 223001 [12] Litvinyuk I V, Lee K F, Dooley P W, Rayner D M, Villeneuve D M and Corkum P B;2003 Phys. Rev. Lett. 90 233003 [13] Nowack K C, Koppens F H L, Nazarov Y V and Vandersypen L M K;2007 Science 318 1430 [14] Krause J L, Schafer K J and Kulander K C;1992 Phys. Rev. Lett. 68 3535 [15] Yang J J, Gobeli D A and El-Sayed M A;1985 J. Phys. Chem. 89 3426 [16] Harada H, Shimizu S, Yatsuhashi T, Sakabe S, Izawa Y and Nakashima N;2001 Chem. Phys. Lett. 342 563 [17] Castleman A W 2007 Progress in Ultrafast Intense Laser Science, Vol. II (Berlin: Springer) pp. 25-40 [18] Shimizu S, Kou J, Kawato S, Shimizu K, Sakabe S and Nakashima N;2000 Chem. Phys. Lett. 317 609 [19] Zyubina T S, Kim G, Lin S H, Mebel A M and Bandrauk A D;2002 Chem. Phys. Lett. 359 253 [20] Müller A M, Uiterwaal C J G J, Witzel B, Wanner J and Yamanouchi K;2000 J. Chem. Phys. 112 9289 [21] Zhang X, Zhang D D, Liu H, Xu H F, Jin M X and Ding D J;2010 J. Phys. B: At. Mol. Opt. Phys. 43 025102 [22] Zhang D D, Ni Q, Luo S Z, Zhang J, Liu H, Xu H F, Ding D J and Jin M X;2011 Chin. Phys. Lett. 28 033301 [23] Zhang J F, Ma R, Zuo W L, Lü H, Huang H W, Xu H F, Jin M X and Ding D J;2015 Chin. Phys. B 24 33302 [24] Robson L, Tasker A D, Ledingham KWD, McKenna P, McCanny T, Kosmidisc C, Tzallas P, Jaroszynski D A and Jonesd D R;2002 Int. J. Mass Spectrom. 220 69 [25] Markevitch A N, Romanov D A, Smith S M, Schlegel H B, Ivanov M Y and Robert J;2004 Phys. Rev. A 69 013401 [26] Hankin S M, Villeneuve D M, Corkum P B and Rayner D M;2001 Phys. Rev. A 64 013405 [27] Castillejo M, Couris S, Koudoumas E and Martin M;1999 Chem. Phys. Lett. 308 373 [28] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [29] Bhardwaj V, Rayner D, Villeneuve D and Corkum P B 2001 Phys. Rev. Lett. 87 253003 [30] Ammosov M V, Delone N B and Krainov V P 1986 Sov. Phys. JETP 64 1191 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|