Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 093201    DOI: 10.1088/1674-1056/ab33f3

Coherent control of fragmentation of methyl iodide by shaped femtosecond pulse train

Qiu-Nan Tong(佟秋男)1,2, De-Hou Fei(费德厚)1,2, Zhen-Zhong Lian(廉振中)1,2, Hong-Xia Qi(齐洪霞)1,2, Sheng-Peng Zhou(周胜鹏)1, Si-Zuo Luo(罗嗣佐)1, Zhou Chen(陈洲)1,2, Zhan Hu(胡湛)1,2
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 Advanced Light Field and Modern Medical Treatment Science and Technology Innovation Center of Jilin Province, Jilin University, Changchun 130012, China

Coherent control of fragmentation of CH3I using shaped femtosecond pulse train is investigated. The dissociation processes can be modulated by changing the separation of the shaped pulse train, and the yield of I+ under the irradiation of the optimal pulse is significantly increased compared with that using the transform-limited pulse. We discuss the control mechanism of dissociation processes with coherent interference in time domain. A three-pulse control model is proposed to explain the counterintuitive experimental results.

Keywords:  coherent control      fragmentation      shaped pulse  
Received:  30 April 2019      Revised:  25 June 2019      Accepted manuscript online: 
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  

Project supported by the National Natural Science Foundation of China (Grant No. 11374124).

Corresponding Authors:  Zhou Chen, Zhou Chen     E-mail:;

Cite this article: 

Qiu-Nan Tong(佟秋男), De-Hou Fei(费德厚), Zhen-Zhong Lian(廉振中), Hong-Xia Qi(齐洪霞), Sheng-Peng Zhou(周胜鹏), Si-Zuo Luo(罗嗣佐), Zhou Chen(陈洲), Zhan Hu(胡湛) Coherent control of fragmentation of methyl iodide by shaped femtosecond pulse train 2019 Chin. Phys. B 28 093201

[1] Ma R, Wu C, Xu N, Huang J, Yang H and Gong Q 2005 Chem. Phys. Lett. 415 58
[2] Eppink A and Parker D H 1997 Rev. Sci. Instrum. 68 3477
[3] Ashfold M N, Nahler N H and Orr-Ewing A J 2006 Phys. Chem. Chem. Phys. 8 26
[4] Hertel I V and Radloff W 2006 Rep. Prog. Phys. 69 1897
[5] Rijs A M, Janssen M H, Chrysostom E H and Hayden C C 2004 Phys. Rev. Lett. 92 123002
[6] Gessner O, Lee A M and Shaffer J P 2006 Science 311 219
[7] Witte T, Hornung T, Windhorn L, Proch D and Kompa K L 2003 J. Chem. Phys. 118 2021
[8] Johnsson P, Mauritsson J, Remetter T, Huillier A L and Schafer K J 2007 Phys. Rev. Lett. 99 233001
[9] Locht R, Dehareng D, Hottmann K, Jochims H W, Baumgartel H and Leyh B 2010 J. Phys. B:At. Mol. Opt. Phys. 43 105101
[10] Poullain S M, Chicharro D V and Banares L 2017 Phys. Chem. Chem. Phys. 19 7886
[11] Hu L L, Zhou Z M, Dong C W and Zhu Q H 2012 J. Chem. Phys. 137 144302
[12] Wei Z R, Li J L, See S T and Loh Z H 2017 J. Phys. Chem. Lett. 8 6067
[13] Wei Z R, Li J L, Yang M H and Loh Z H 2017 Nat. Comm 8 735
[14] Yazawa H, Tanabe T, Okamoto T, Yamanaka M and Kannari F 2006 J. Chem. Phys. 124 204314
[15] Breuning H G, Lauer A and Weitzel K M 2006 J. Phys. Chem. A 110 20
[16] Singh K P, Kenfack A, Rost J M and Pfeifer T 2018 Phys. Rev. A. 97 033406
[17] Graham P, Menkir G and Levis R J 2003 Spectrochim. Acta Part. B 58 1097
[18] Sussman B J, Townsend D, Ivanov M Y and Stolow A 2006 Science 314 278
[19] Corrales M E, GonzálezVázquez J, Balerdi G, Solá I R, Nalda R and Banres L 2014 Nat. Chem. 6 785
[20] Thanopulos I and Shapiro M 2006 J. Chem. Phys. 125 133314
[21] Katharine M and Rabitz H 2012 Nat. Chem. 4 72
[22] Geremia J M, Zhu W S and Rabitz H 2000 J. Chem. Phys. 113 10841
[23] Xie X, Doblhoff-Dier K and Kitzler M 2012 Phys. Rev. Lett. 109 243001
[24] Strobel A, Lochschmidt A, Fischer I, Niedner-Schatteburg G and Bondybey V E 1993 J. Chem. Phys. 99 733
[25] Trippel S, Stei M, Eichhorn C, Otto R, Hlavenka P, Weidemuller M and Wester R 2011 J. Chem. Phys. 134 104306
[26] Gitzinger G, Corrales M E and Banares L 2010 J. Chem. Phys. 132 234313
[27] Felix A, Burt M, Amini K and Rolles D 2018 J. Chem. Phys. 149 204313
[28] Wei Z R, Tian L, Li J L and Loh Z H 2018 J. Phys. Chem. Lett. 9 5742
[29] Zhou C, Tong Q N, Zhang C C and Hu Z 2015 Chin. Phys. B 24 043303
[30] Dela Cruz J M, Pastirk I, Lozovoy V V, Walowicz K A and Dantus M 2004 J. Phys. Chem. A 108 53
[31] Lozovoy V V, Pastirk I and Dantus M 2004 Opt. Lett. 29 775
[32] Liu H, Yang Z, Gao Z and Tang Z 2007 J. Chem. Phys. 126 044316
[33] Wang Y, Zhang S, Wei Z and Zhang B 2008 J. Phys. Chem. A 112 3846
[34] Tong Q N, Lian Z Z, Qi H X, Chen Z and Hu zhan 2019 Chin. Phys. B 28 33201
[35] Song Y D, Chen Zhou, Sun C K and Hu Z 2013 Chin. Phys. B 22 013302
[36] Nalda R, Izquierdo J G, Dura J and Banares L 2007 J. Chem. Phys. 126 021101
[37] Corrales M E, GonzálezV ázquez J and Banres L 2012 J. Phys. Chem. A 116 2669
[38] Luo S Z, Hu W H, Yu J Q, Li X K and Ding D J 2017 J. Phys. Chem. A 121 6547
[1] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[2] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[3] Ultrafast plasmon dynamics in asymmetric gold nanodimers
Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全). Chin. Phys. B, 2022, 31(6): 064208.
[4] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[5] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[6] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[7] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[8] Femtosecond strong-field coherent control of nonresonant ionization with shaped pulses
Qiu-Nan Tong(佟秋男), Zhen-Zhong Lian(廉振中), Liang Zhao(赵亮), Hong-Xia Qi(齐洪霞), Zhou Chen(陈洲), Zhan Hu(胡湛). Chin. Phys. B, 2019, 28(3): 033201.
[9] Convenient synthesis of stable silver quantum dots with enhanced photoluminescence emission by laser fragmentation
Shuang Li(李爽), Ming Chen(陈明). Chin. Phys. B, 2016, 25(4): 046103.
[10] Ionizations and fragmentations of benzene, methylbenzene, and chlorobenzene in strong IR and UV laser fields
Zhang Jun-Feng (张军峰), Lü Hang (吕航), Zuo Wan-Long (左万龙), Xu Hai-Feng (徐海峰), Jin Ming-Xing (金明星), Ding Da-Jun (丁大军). Chin. Phys. B, 2015, 24(11): 113301.
[11] Field-free orientation of diatomic molecule via the linearly polarized resonant pulses
Li Su-Yu (李苏宇), Guo Fu-Ming (郭福明), Wang Jun (王俊), Yang Yu-Jun (杨玉军), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(10): 104205.
[12] Ultrafast population transfer in a Λ-configuration level system driven by few-cycle laser pulses
Zhang Wen-Jing (张文静), Xie Xiao-Tao (谢小涛), Jin Lu-Ling (金璐玲), Bai Jin-Tao (白晋涛). Chin. Phys. B, 2013, 22(11): 114210.
[13] Control of the photoionization/photodissociation processes of cyclopentanone with trains of femtosecond laser pulses
Song Yao-Dong (宋耀东), Chen Zhou (陈洲), Yang Xue (杨雪), Sun Chang-Kai (孙长凯), Zhang Cong-Cong (张丛丛), Hu Zhan (胡湛). Chin. Phys. B, 2013, 22(10): 103301.
[14] Interaction of parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser
Wang Da-Shuai (王大帅), Wu Ge (吴戈), Gao Bo (高博), Tian Xiao-Jian (田小建). Chin. Phys. B, 2013, 22(1): 014207.
[15] Single source emission of proton projectile fragments in nucleus-emulsion interactions
Zhang Dong-Hai (张东海), Li Jun-Sheng (李俊生), Li Hui-Ling (李惠玲 ). Chin. Phys. B, 2012, 21(11): 110501.
No Suggested Reading articles found!