Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 074205    DOI: 10.1088/1674-1056/20/7/074205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effective Bose–Hubbard interaction with enhanced nonlinearity in an array of coupled cavities

Zhou Ling(周玲), Liu Zhong-Ju(刘忠菊), Yan Wei-Bin(闫伟斌), and Mu Qing-Xia(穆青霞)
School of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  An array of coupled cavities, each of which contains an N four-level atom, is investigated. When cavity fields dispersively interact with the atoms, an effective Bose—Hubbard model can be achieved. By numerically comparing the full Hamiltonian with the effective one, we find that within the parameters region, the effective Hamiltonian can completely account for the Mott-insulator as well as the phase transition from the similar Mott-insulator to superfluid. Through jointly adjusting the classical Rabi frequency and the detuning, the nonlinearity can be improved.
Keywords:  nonlinearity      Bose—Hubbard model      quantum phase transition  
Received:  15 September 2010      Revised:  02 March 2011      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  73.43.Nq (Quantum phase transitions)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  

Cite this article: 

Zhou Ling(周玲), Liu Zhong-Ju(刘忠菊), Yan Wei-Bin(闫伟斌), and Mu Qing-Xia(穆青霞) Effective Bose–Hubbard interaction with enhanced nonlinearity in an array of coupled cavities 2011 Chin. Phys. B 20 074205

[1] Solano E, Agarwal G S and Walther H 2003 Phys. Rev. Lett. 90 027903
[2] Zubairy M S, Kim M and Scully M O 2003 Phys. Rev. A 68 033820
[3] Zheng S B 2004 Phys. Rev. A 69 055801
[4] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[5] Scully M O, Fry E S, Ooi C H R and Wodkiewicz K 2006 Phys. Rev. Lett. 96 010501
[6] Zhou L, Yang G H and Patnaik A K 2009 Phys. Rev. A 79 062102
[7] Zhou L, Xiong H and Zubairy M S 2006 Phys. Rev. A 74 022321
[8] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E and Kimble H J 2005 Nature 436 87
[9] Schmidt H and Imamouglu A 1996 Opt. Lett. 21 1936
[10] Imamouglu A, Schmidt H, Woods G and Deutsch M 1997 Phys. Rev. Lett. 79 1467 (also see the Erratum: 1998 ibid 81 2836)
[11] Fleischhauer M, Imamouglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[12] Grangier P, Walls D F and Gehri K M 1998 Phys. Rev. Lett. 81 2833
[13] Werner M J and Imamouglu A 1999 Phys. Rev. A 61 011801(R)
[14] Hartmann M J, Brand ao F G S L and Plenio M B 2006 Nature Phys. 2 849
[15] Su H, Niu Y P and Gong S Q 2007 Chin. Phys. 16 0429
[16] Wu H B, Chang H, Ma J, Xie C D and Wang H 2005 Acta Phys. Sin. 54 3632 (in Chinese)
[17] Hartmann M J and Plenio M B 2007 Phys. Rev. Lett. 99 103601
[18] Hartmann M J, Brand ao F G S L and Plenio M B 2007 Phys. Rev. Lett. 99 160501
[19] Cho J, Angelakis D G and Bose S 2008 Phys. Rev. A 78 062338
[20] Zhou L, Yan W B and Zhao X Y 2009 J. Phys. B: At. Mol. Opt. Phys. 42 065502
[21] Yang W L, Wei H, Feng M and An J H 2009 Chin. Phys. B 18 3677
[22] Hartmann M J, Brand ao F G S L and Plenio M B 2008 New J. Phys. 10 033011
[23] James D F V and Jerke J 2007 Can. J. Phys. 85 625
[24] Armani D K, Kippenberg T J, Spillane S M and Vahala K J 2003 Nature 421 925
[25] Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, keppenberg T J, Vahala K J and Kimble H 2006 Nature 443 671
[26] Spillane S M, Kuooebberg T J, Vahala K T, Goh K W, Wilcut E and Kimble H J 2005 Phys. Rev. A 71 013817
[27] Vahala K J 2003 Nature 424 839
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[3] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[4] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[5] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[6] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[7] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[8] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[9] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[10] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[11] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[12] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[13] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[14] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[15] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
No Suggested Reading articles found!