Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 064401    DOI: 10.1088/1674-1056/20/6/064401
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Thermal resistance matrix representation of thermal effects and thermal design in multi-finger power heterojunction bipolar transistors

Jin Dong-Yue(金冬月), Zhang Wan-Rong(张万荣), Chen Liang(陈亮), Fu Qiang(付强), Xiao Ying(肖盈), Wang Ren-Qing(王任卿), and Zhao Xin(赵昕)
College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
Abstract  The thermal resistance matrix including self-heating thermal resistance and thermal coupling resistance is presented to describe the thermal effects of multi-finger power heterojunction bipolar transistors. The dependence of thermal resistance matrix on finger spacing is also investigated. It is shown that both self-heating thermal resistance and thermal coupling resistance are lowered by increasing the finger spacing, in which the downward dissipated heat path is widened and the heat flow from adjacent fingers is effectively suppressed. The decrease of self-heating thermal resistance and thermal coupling resistance is helpful for improving the thermal stability of power devices. Furthermore, with the aid of the thermal resistance matrix, a 10-finger power heterojunction bipolar transistor (HBT) with non-uniform finger spacing is designed for high thermal stability. The optimized structure can effectively lower the peak temperature while maintaining a uniformity of the temperature profile at various biases and thus the device effectively may operate at a higher power level.
Keywords:  heterojunction bipolar transistor      power      thermal stability      thermal resistance matrix  
Received:  19 November 2010      Revised:  15 December 2010      Accepted manuscript online: 
PACS:  44.10.+i (Heat conduction)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  91.60.Ki (Thermal properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61006059, 60776051, and 61006044), the Beijing Municipal Natural Science Foundation of China (Grant No. 4082007), the Beijing Municipal Education Committee of China (Grant Nos. KM200710005015 and KM200910005001), the Beijing Municipal Trans-century Talent Project of China (Grant No. 67002013200301), the Beijing Innovatory Talent Training Program of China (Grant No. 00200054RA001), and the Ph. D. Start Science Foundation of Beijing University of Technology of China (Grant No. X0002013201102).

Cite this article: 

Jin Dong-Yue(金冬月), Zhang Wan-Rong(张万荣), Chen Liang(陈亮), Fu Qiang(付强), Xiao Ying(肖盈), Wang Ren-Qing(王任卿), and Zhao Xin(赵昕) Thermal resistance matrix representation of thermal effects and thermal design in multi-finger power heterojunction bipolar transistors 2011 Chin. Phys. B 20 064401

[1] Avenier G, Diop M, Chevalier P, Troillard G, Loubet N, Bouvier J, Depoyan L, Derrier N, Buczko M, Leyris C, Boret S, Montusclat S, Margain A, Pruvost S, Nicolson S T, Yau K H K, Revil N, Gloria D, Dutartre D, Voinigescu S P and Chantre A 2009 IEEE J. Solid-State Circuits 44 2312
[2] Kim H S, Kim K Y, Kim W Y, Noh Y S, Yom I B, Oh I Y and Park C S 2009 Electron. Lett. 45 1036
[3] Li X J, Geng H B, Lan M J, Yang D Z, He S Y and Liu C M 2010 Chin. Phys. B 19 066103
[4] Zhang Y R, Zhang B, Li Z H, Lai C J and Li Z J 2009 Chin. Phys. B 18 763
[5] Jin D Y, Zhang W R, Shen P, Xie H Y, Wang Y and Zhang W 2008 Solid-State Electron. 52 937
[6] Zhou S L, Huang H, Huang Y Q and Ren X M 2007 Acta Phys. Sin. 56 2890 (in Chinese)
[7] Hu H Y, Zhang H M, Lu Y, Dai X Y, Hou H, Ou J F, Wamg W and Wang X Y 2006 Acta Phys. Sin. 55 403 (in Chinese)
[8] Cheng R J and Ge H X 2010 Chin. Phys. B 19 090201
[9] Kou J L, Lu H J, Wu F M and Xu Y S 2009 Chin. Phys. B 18 1553
[10] Liu X M, Li B C and Huang Q P 2010 Chin. Phys. B 19 097201
[11] Gao G B, Wang M Z, Gui X and Morkoc H 1989 IEEE Trans. Electron. Dev. 36 854
[12] Jin D Y, Zhang W R, Xie H Y, Chen L, Shen P and Hu N 2009 Microelectronics Reliability 49 382
[13] Jin D Y, Zhang W R, Xie H Y, Shen P and Wang Y 2008 Journal of Beijing University of Technology 34 141 (in Chinese)
[1] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[4] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[5] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[6] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[7] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[8] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[9] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[10] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[11] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[12] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[13] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[14] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[15] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
No Suggested Reading articles found!