|
|
Multi-configuration Dirac–Hartree–Fock (MCDHF) calculations for Zn-like sequence from Z=48 to 54 |
Hu Feng (胡峰)ab, Jiang Gang (蒋刚)a, Yang Jia-Min (杨家敏)b, Wang Chuan-Ke (王传珂)b, Zhao Xue-Feng (赵学峰)a, Zang Hua-Ping (臧华萍)b |
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610064, China; b Research Centre of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-986, Mianyang 621900, China |
|
|
Abstract The 4s4p excitation energies and the 4s2-4s4p E1 transitions for zinc-like ions from Z=48 to 54 are calculated by the multi-configuration Dirac-Hartree-Fock (MCDHF) method in this paper. The results for fine-structure energy levels, wavelengths and lifetimes between Z=48 (Cd) and Z=54 (Xe) are presented and compared with other theoretical and experimental results. The calculated values including core-valence correlation are found to be very similar to other theoretical and experimental values. We believe that our calculated values can guide experimentalists in identifying the fine-structure levels in their future work.
|
Received: 26 August 2010
Revised: 07 December 2010
Accepted manuscript online:
|
PACS:
|
31.15.V-
|
(Electron correlation calculations for atoms, ions and molecules)
|
|
31.30.jc
|
(Relativistic corrections to atomic structure and properties)
|
|
32.70.Cs
|
(Oscillator strengths, lifetimes, transition moments)
|
|
Fund: Project supported by the National High Technology Research and Development Program of China, the National Natural Science Foundation of China (Grant No. 10874156), and the Key Science and Technology Foundation of the China Academy of Engineering Physics (Grant No. 2010A0102003). |
Cite this article:
Hu Feng (胡峰), Jiang Gang (蒋刚), Yang Jia-Min (杨家敏), Wang Chuan-Ke (王传珂), Zhao Xue-Feng (赵学峰), Zang Hua-Ping (臧华萍) Multi-configuration Dirac–Hartree–Fock (MCDHF) calculations for Zn-like sequence from Z=48 to 54 2011 Chin. Phys. B 20 063103
|
[1] |
Joshi Y N and van Kleef Th A M 1986 Phys. Scr. 34 135
|
[2] |
Trigueiros A, Pettersson S G and Reyna Almandos J G 1986 it Phys. Scr. 34 164
|
[3] |
Litzen U and Reader J 1987 Phys. Rev. A 36 5159
|
[4] |
Churilov S S, Ryabtsev A N and Wyart J F 1988 Phys. Scr. 38 326
|
[5] |
NIST Atomic Spectra Database http://physics.nist.gov/ PhysRefData/ASD
|
[6] |
Liu Y, Hutton R, Zou Y anderson M and Brage T 2006 J. Phys. B: At. Mol. Opt. Phys. 39 3147
|
[7] |
Reader J and Luther G 1980 Phys. Rev. Lett. 45 609
|
[8] |
Acquista N and Reader J 1984 J. Opt. Soc. Am. B 1 649
|
[9] |
Seely J F, Ekberg J O, Brown C M, Feldman U, Behring W E, Reader J and Richardson M C 1986 Phys. Rev. Lett. 57 2924
|
[10] |
Brown C M, Seely J F, Kania D R, Hammel B A, Back C A, Lee R W, Bar-Shalon A and Behring W E 1994 At. Data Nucl. Data Tables 58 203
|
[11] |
Hinnov E, Beiersdorfer P, Bell R, Stevens J, Suckewer S, von Goeler S, Wouters A, Dietrich D, Gerassimenko M and Silver E 1987 Phys. Rev. A 35 4876
|
[12] |
Sugar J, Kaufman V, Balk D H and Kim Y K 1991 J. Opt. Soc. Am. B 8 1795
|
[13] |
Sugar J, Kaufman V and Rowan L 1993 J. Opt. Soc. Am. B 10 799
|
[14] |
Träbert, Beiersdorfer P, Fournier K B, Utter S B and Wong K L 2001 Can. J. Phys. 79 153
|
[15] |
Utter S B, Beiersdorfer P and Träbert E 2002 Can. J. Phys. 80 1503
|
[16] |
Utter S B, Beiersdorfer P and Träbert E 2001 Can. J. Phys. 81 9111
|
[17] |
Träbert E, Beiersdorfer P, Fournier K B and Chen M H 2005 Can. J. Phys. 83 829
|
[18] |
Cheng K T and Wagner R A 1987 Phys. Rev. A 36 5435
|
[19] |
Biémont E 1989 At. Data Nucl. Data Tables 43 163
|
[20] |
Indelicato P and Desclaux J P 1990 Phys. Rev. A 42 5139
|
[21] |
Biémont E, Quinet P and Fawcett B C 1989 Phys. Scr. 39 562
|
[22] |
Chou H S, Chi H C and Huang K N 1994 Phys. Rev. A 49 2394
|
[23] |
Vilkas M J and Ishikawa Y 2005 Phys. Rev. A 72 032512
|
[24] |
Blundell S A, Johnson W R, Safronova M S and Safronova U I 2008 Phys. Rev. A 77 032507
|
[25] |
Chen M H and Cheng K T 2010 J. Phys. B: At. Mol. Opt. Phys 43 074019
|
[26] |
Hu F, Jiang G, Yang J M, Wang C K, Zhao X F and Hao L H 2010 Eur. Phys. J. D 61 15
|
[27] |
Hu F, Jiang G, Hong W and Hao L H 2008 Eur. Phys. J. D 49 293
|
[28] |
Hao L H, Jiang G, Song S Q and Hu F 2008 At. Data Nucl. Data Tables 94 739
|
[29] |
Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer) pp. 281-295
|
[30] |
Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207
|
[31] |
Jönsson P, He X, Fischer C F and Grant I P 2007 it Comput. Phys. Commun. 177 597
|
[32] |
Parpia F A, Fischer C F and Grant I P 1996 Comput. Phys. Commun. 94 249
|
[33] |
Olsen J, Godefroid M R, Jonsson P A, Malmquist P A and Froese F C 1995 Phys. Rev. E 52 4499
|
[34] |
Fischer C F, Brage T and Jönsson P 1997 Computational Atomic Structure (Bristol: Institute of Physics Publishing) p. 52
|
[35] |
Ding X B and Dong C Z 2004 Acta Phys. Sin. 53 3326 (in Chinese)
|
[36] |
Gao C S, Shen Y F and Zeng J L 2008 Acta Phys. Sin. 57 4059 (in Chinese)
|
[37] |
Fleming J and Hibbert A 1995 Phys. Scr. 51 139
|
[38] |
Fischer C F and Hansen J E 1978 Phys. Rev. A 17 1956
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|