Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 054102    DOI: 10.1088/1674-1056/20/5/054102
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Investigation of a wideband folded double-ridged waveguide slow-wave system

He Jun(何俊), Wei Yan-Yu(魏彦玉), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥)
Vacuum Electronics National Laboratory, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  The folded double-ridged waveguide structure is presented and its properties used for wide-band traveling-wave tube are investigated. Expressions of dispersion characteristics, normalized phase velocity and interaction impedance of this structure are derived and numerically calculated. The calculated results using our theory agree well with those obtained by using the 3D electromagnetic simulation software HFSS. Influences of the ridge-loaded area and broad-wall dimensions on the high frequency characteristics of the novel slow-wave structure are discussed. It is shown that the folded double-ridged waveguide structure has a much wider relative passband than the folded waveguide slow-wave structure and a relative passband of 67% could be obtained, indicating that this structure can operate in broad-band frequency ranges of beam–wave interaction. The small signal gain property is investigated for ensuring the improvement of bandwidth. Meanwhile, with comparable dispersion characteristics, the transverse section dimension of this novel structure is much smaller than that of conventional one, which indicates an available way to reduce the weight of traveling-wave tube.
Keywords:  millimeter wave traveling-wave tube      slow-wave structure      folded waveguide      high-frequency characteristics  
Received:  13 August 2010      Revised:  24 December 2010      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  41.60.Cr (Free-electron lasers)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No. 60971038) and in part by the Fundamental Research Funds for Central Universities, China (Grant No. ZYGX2009Z003).

Cite this article: 

He Jun(何俊), Wei Yan-Yu(魏彦玉), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) Investigation of a wideband folded double-ridged waveguide slow-wave system 2011 Chin. Phys. B 20 054102

[1] Liao F J 1999 Vacuum Electronics Technology---the Key Component of Information Equipment (Beijing: National Defense Industry Press) pp. 10--98 (in Chinese)
[2] Johnston S L 1980 Millimeter Wave Radar (MA: Artech House) pp. 12--69
[3] Wei Y Y, Wang W X, Sun J H, Liu S G, Jia B F and Park G S 2002 Chin. Phys. 11 277
[4] Xie H Q and Liu P K 2006 Chin. Phys. 15 2042
[5] Young H N, Sang W C and Jin J C 2002 IEEE Trans. Plasma Sci. 30 1017
[6] Kornfeld G K, Bosch E, Gerum W and Fleury G 2001 IEEE Trans. Electron Devices 48 68
[7] Waterman J 1979 Folded-Waveguide Millimeter-Wave Circuit Model (MS Thesis) (California: Stanford Univ. Stanford)
[8] Dohler G, Gagne D, Gallagher D and Moats R 1987 International Electron Devices Meeting Washington D.C., December 6--9, 1987 pp485--488
[9] Xu A,Wang W X, Wei Y Y and Gong Y B 2009 Chin. Phys. B 18 810
[10] Booske J H, Converse M C, Kory C L, Chevalier C T, Gallagher D A, Kreischer K E, Heinen V O and Bhattacharjee S 2005 IEEE Trans. Electron Devices 52 685
[11] Choi J J, Armstrong C M, Calise F, Ganguly A K, Kyser R H, Park G S, Parker R K and Wood F 1996 Phys. Rev. Lett. 76 4273
[12] Sadwick L, Hwu R J and Scheitrum G 2003 Int. Vacuum Electronics Conf. Seoul, May 28--30 2003 pp. 360, 361
[13] Han S T, Jang K H, So J K, Kim J, Shin Y M, Ryskin N M, Chang S S and Park G S 2004 IEEE Trans. Plasma Sci. 32 60
[14] Bhattacharjee S, Booske J H, Kory C L, Weide D W, Limbach S, Gallagher S, Welter J D, Lopez M R, Gilgenbach R M, Ives R L, Read M E, Divan R, Mancini D C 2004 IEEE Trans. Plasma Science 32 1002
[15] Ganguly A K, Choi J J and Armstrong C M 1995 IEEE Trans. Electron Devices 42 348
[16] Choi J J, Armstrong C M, Ganguly A K and Calise F 1995 Phys. Plasmas 2 915
[17] He J, Wei Y Y, Gong Y B, Lu Z G and Wang W X 2010 Acta. Phys. Sin. 59 6655 (in Chinese)
[18] He J, Wei Y Y, Gong Y B and Wang W X 2009 Chin. Phys. Lett. 26 114103
[19] He J, Wei Y Y, Gong Y B and Wang W X 2010 Acta. Phys. Sin. 59 2843 (in Chinese)
[20] Hopfer S 1955 IRE Trans. Microwave Theory and Technol. 3 20
[21] Cohen S B 1947 Proc. I.R.E. 35 August pp783--788
[22] Collin R E 1960 Field Theory of Guided Waves (New York: McGraw Hill) pp. 338--346
[23] Pierce J R 1950 Traveling Wave Tubes (Princeton, NJ: Van Nostrand) pp. 231--259
[24] Getsinger W J 1962 IRE Trans. Microwave Theory and Technol. 10 41
[25] Pierce J R 1947 Proc. I.R.E. 35 pp. 111--123 endfootnotesize
[1] Linear theory of beam-wave interaction in double-slot coupled cavity travelling wave tube
Fang-ming He(何昉明), Wen-qiu Xie(谢文球), Ji-run Luo(罗积润), Min Zhu(朱敏), Wei Guo(郭炜). Chin. Phys. B, 2016, 25(3): 038401.
[2] A novel multi-pin rectangular waveguide slow-wave structure based backward wave amplifier at 340 GHz
Zhang Kai-Chun (张开春), Qi Zhong-Kuo (漆中阔), Yang Zhao-Long (杨召龙). Chin. Phys. B, 2015, 24(7): 079402.
[3] Theoretical models for designing a 220-GHz folded waveguide backward wave oscillator
Cai Jin-Chi (蔡金赤), Hu Lin-Lin (胡林林), Ma Guo-Wu (马国武), Chen Hong-Bin (陈洪斌), Jin Xiao (金晓), Chen Huai-Bi (陈怀璧). Chin. Phys. B, 2015, 24(6): 060701.
[4] A novel slotted helix slow-wave structure for high power Ka-band traveling-wave tubes
Liu Lu-Wei (刘鲁伟), Wei Yan-Yu (魏彦玉), Wang Shao-Meng (王少萌), Hou Yan (侯艳), Yin Hai-Rong (殷海荣), Zhao Guo-Qing (赵国庆), Duan Zhao-Yun (段兆云), Xu Jin (徐进), Gong Yu-Bin (宫玉彬), Wang Wen-Xiang (王文祥), Yang Ming-Hua (杨明华). Chin. Phys. B, 2013, 22(10): 108401.
[5] Design of a reentrant double staggered ladder circuit for V-band coupled-cavity traveling-wave tube
Liu Yang(刘洋), Xu Jin(徐进), Lai Jian-Qiang(赖剑强), Xu Xiong(许雄), Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Huang Min-Zhi(黄民智), Tang Tao(唐涛), and Gong Yu-Bin(宫玉彬) . Chin. Phys. B, 2012, 21(7): 074202.
[6] Study on a W-band modified V-shaped microstrip meander-line traveling-wave tube
Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Xu Xiong(许雄), Yin Hai-Rong(殷海荣), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) . Chin. Phys. B, 2012, 21(6): 064210.
[7] Research of sine waveguide slow-wave structure for a 220-GHz backward wave oscillator
Xu Xiong(许雄), Wei Yan-Yu(魏彦玉), Shen Fei(沈飞), Huang Min-Zhi(黄民智), Tang Tao(唐涛), Duan Zhao-Yun(段兆云), and Gong Yu-Bin(宫玉彬) . Chin. Phys. B, 2012, 21(6): 068402.
[8] An open-styled dielectric-lined azimuthally periodic circular waveguide for a millimeter wave traveling-wave tube
Liu Yang(刘漾), Wei Yan-Yu(魏彦玉), Xu Jin(徐进), Yin Hai-Rong(殷海荣), Yue Ling-Na(岳玲娜), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) . Chin. Phys. B, 2012, 21(4): 048403.
[9] Dispersion characteristics of a slow wave structure with a modified photonic band gap
Gao Xi(高喜), Yang Zi-Qiang(杨梓强), Cao Wei-Ping(曹卫平), and Jiang Yan-Nan(姜彦南) . Chin. Phys. B, 2011, 20(3): 030703.
[10] Small-signal analysis of a rectangular helix structure traveling-wave-tube
Fu Cheng-Fang(付成芳), Wei Yan-Yu(魏彦玉), Duan Zhao-Yun(段兆云), Wang Wen-Xiang(王文祥), and Gong Yu-Bin(宫玉彬). Chin. Phys. B, 2009, 18(7): 2749-2756.
[11] Analysis of space harmonic selectivity of period-varying folded waveguide
Xu Ao(徐翱), Wang Wen-Xiang(王文祥), Wei Yan-Yu(魏彦玉), and Gong Yu-Bin(宫玉彬). Chin. Phys. B, 2009, 18(3): 1270-1275.
[12] The study of synchronization in the periodic nonuniform folded waveguide
Xu Ao(徐翱), Wang Wen-Xiang(王文祥), Wei Yan-Yu(魏彦玉), and Gong Yu-Bin(宫玉彬). Chin. Phys. B, 2009, 18(2): 810-814.
[13] Variational analysis of the disc-loaded waveguide slow-wave structures
Li Jian-Qing (李建清), Mo Yuan-Long (莫元龙). Chin. Phys. B, 2005, 14(11): 2300-2304.
No Suggested Reading articles found!