Abstract This paper investigates the properties of traveling wave-beam interaction in a rectangular helix traveling-wave-tube (TWT) for a solid sheet electron beam. The `hot' dispersion equation is obtained by means of the self-consistent field theory. The small signal analysis, which includes the effects of the beam parameters and slow-wave structure (SWS) parameters, is carried out by theoretical computation. The numerical results show that the bandwidth and the small-signal gain of the rectangular helix TWT increase as the beam current increases; and the beam voltage not obviously influences the small signal gain. Among different rectangular helix structures, the small-signal gain increases as the width of the rectangular helix SWS increases, however, the bandwidth decreases whether structure parameters a and L or $\psi$ and L are fixed or not. In addition, a comparison of the small-signal gain of this structure with a conventional round helix is made. The presented analysis will be useful for the design of the TWT with a rectangular helix circuit.
Received: 18 October 2008
Revised: 10 November 2008
Accepted manuscript online:
Fund: Project supported in part by the
National Natural Science Foundation of China (Grant No 60532010) and
the Talent Fund of Chinese Education Administration.
Cite this article:
Fu Cheng-Fang(付成芳), Wei Yan-Yu(魏彦玉), Duan Zhao-Yun(段兆云), Wang Wen-Xiang(王文祥), and Gong Yu-Bin(宫玉彬) Small-signal analysis of a rectangular helix structure traveling-wave-tube 2009 Chin. Phys. B 18 2749
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.