Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 047801    DOI: 10.1088/1674-1056/20/4/047801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spectral transmittance and module structure fitting for transmission-mode GaAs photocathodes

Zhao Jing(赵静), Chang Ben-Kang(常本康), Xiong Ya-Juan(熊雅娟) and Zhang Yi-Jun(张益军)
Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  A transmission-mode GaAs photocathode includes four layers of glass, Si3N4, Ga1-xAlxAs and GaAs. A gradient-doping photocathode sample was obtained by molecular beam epitaxy and its transmittance was measured by spectrophotometer from 600 nm to 1100 nm. The theoretical transmittance is derived and simulated based on the matrix formula for thin film optics. The simulation results indicate the influence of the transition layers and the three thin-film layers except glass on the transmittance spectra. In addition, a fitting coefficient needed for error modification enters into the fitted formula. The fitting results show that the relative error in the full spectrum reduces from 19.51% to 4.35% after the formula is modified. The coefficient and the thicknesses are gained corresponding to the minimum relative error, meanwhile each layer and total thin-film thickness deviation in the module can be controlled within 7%. The presence of glass layer roughness, layer interface effects and surface oxides is interpreted on the modification.
Keywords:  GaAs photocathode      transmission-mode      optical properties      matrix formula  
Received:  21 November 2010      Revised:  15 December 2010      Accepted manuscript online: 
PACS:  78.66.Fd (III-V semiconductors)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.40.Fy (Semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60678043) and the Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institutions of China (Grant No. CX09B_096Z).

Cite this article: 

Zhao Jing(赵静), Chang Ben-Kang(常本康), Xiong Ya-Juan(熊雅娟) and Zhang Yi-Jun(张益军) Spectral transmittance and module structure fitting for transmission-mode GaAs photocathodes 2011 Chin. Phys. B 20 047801

[1] Liu Z, Sun Y, Peterson S and Pianetta P 2008 Appl. Phys. Lett. 92 241107
[2] Zhang Y J, Chang B K, Yang Z, Niu J and Zou J J 2009 Chin. Phys. B 18 4541
[3] Mulhollan G A, Subashiev A V, Clendenin J E, Garwin E L, Kirby R E, Maruyama T and Prepost R 2001 Phys. Lett. A 282 309
[4] Liu Z, Machuca F, Pianetta P, Spicer W E and Pease R F W 2004 Appl. Phys. Lett. 85 1541
[5] Ding H B, Pang W N, Liu Y B and Shang R C 2005 Acta Phys. Sin. 54 4097 (in Chinese)
[6] Moré S, Tanaka S, Tanaka S, Fujii Y and Kamada M 2000 Surf. Sci. 454--456 161
[7] Spicer W E and Herrera-Gomez A 1993 Proc. SPIE 2022 18
[8] Su C Y, Spicer W E and Lindau I 1983 J. Appl. Phys. 54 1413
[9] Witit-anun N, Rakkwamsuk P and Limsuwan P 2008 Proc. SPIE 6793 67930J
[10] Zhang X J, Ma H L, Li Y X, Wang Q P, Ma J, Zong F J and Xiao H D 2006 Chin. Phys. 15 2385
[11] Larruquert J I, Méndez J A, Aznárez J A, Tremsin A S and Siegmund O H W 2002 Appl. Opt. 41 2532
[12] Lév^eque G and Villachon-Renard Y 1990 Appl. Opt. 29 3207
[13] Tang J F, Gu P F, Liu X and Li H F 2006 Modern Optical Thin Film Technology (Zhejiang: Zhejiang University Press) pp. 20--32 (in Chinese)
[14] Aspnes D E, Kelso S M, Logan R A and Bhat R 1986 J. Appl. Phys. 60 754
[15] Du X Q Study of GaAs Photocathode with High Performance (Ph. D. Thesis) (Nanjing: Nanjing University of Science and Technology) (in Chinese)
[16] Yang Z, Zou J J and Chang B K 2010 Acta Phys. Sin. 59 4290 (in Chinese)
[17] Jung C and Rhee B K 2002 Appl. Opt. 41 3861
[18] Yu P Y and Cardona M 1996 Fundamentals of Semiconductors (Berlin: Springer)
[19] Kawashima Y, Ide T, Aoyagi S and Kudo M 2004 Appl. Surf. Sci. 231 800
[20] Baek J, Kovar D, Keto J W and Becker M F 2006 Appl. Opt. 45 1627
[21] Watanabe K, Nakamura Y, Ichikawa M, Kuboya S, Katayama R and Onabe K 2009 J. Vac. Sci. Technol. B 27 1874 endfootnotesize
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[3] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[4] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[5] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[6] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[7] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[8] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[9] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[10] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[11] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[12] Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals
Rui-Peng Chai(柴瑞鹏), Dan-Hui Hao(郝丹辉), Dang-Li Gao(高当丽), and Qing Pang(庞庆). Chin. Phys. B, 2021, 30(3): 037601.
[13] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[14] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[15] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
No Suggested Reading articles found!