|
|
Synchrotron radiation VUV double photoionization of some small molecules |
Zhao Yu-Jie(赵玉杰)a)b), Shan Xiao-Bin(单晓斌)b), Sheng Liu-Si(盛六四)b)† , Wang Zhen-Ya(王振亚)c), Zhang Jie(张杰)a), and Yu Chun-Ri(余春日)a) |
a School of Physics and Electrical Engineering, Anqing Normal College, Anqing 246011, China; b National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China; c Laboratory of Environmental Spectroscopy, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
|
|
|
Abstract The VUV double photoionizations of small molecules (NO, CO, CO2, CS2, OSC and NH3) were investigated with photoionization mass spectroscopy using synchrotron radiation. The double ionization energies of molecules were determined with photoionization efficiency spectroscopy. The total energies of these molecules and their parent dications (NO2+, CO2+, CO22+, CS22+, OSC2+and NH32+) were calculated using the Gaussian 03 program and Gaussian 2 calculations. Then, the adiabatic double ionization energies of the molecules were predicated by using high accuracy energy mode. The experimental double ionization energies of these small molecules were all in reasonable agreement with their respective calculated adiabatic double ionization energies. The mechanisms of double photoionization of these molecules were discussed based on a comparison of our experimental results with those predicted theoretically. The equilibrium geometries and harmonic vibrational frequencies of molecules and their parent dications were calculated by using the MP2 (full) method. The differences in configurations between these molecules and their parent dications were also discussed on the basis of theoretical calculations.
|
Received: 25 August 2010
Revised: 10 October 2010
Accepted manuscript online:
|
PACS:
|
32.80.-t
|
(Photoionization and excitation)
|
|
33.20.Ni
|
(Vacuum ultraviolet spectra)
|
|
34.80.Gs
|
(Molecular excitation and ionization)
|
|
82.50.-m
|
(Photochemistry)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874167) and the Knowledge Innovation Foundation of the Chinese Academy of Sciences (Grant No. KJCX2-YW-N24). |
Cite this article:
Zhao Yu-Jie(赵玉杰), Shan Xiao-Bin(单晓斌), Sheng Liu-Si(盛六四), Wang Zhen-Ya(王振亚), Zhang Jie(张杰), and Yu Chun-Ri(余春日) Synchrotron radiation VUV double photoionization of some small molecules 2011 Chin. Phys. B 20 043201
|
[1] |
Slattery A E and Field T A 2005 J. Chem. Phys. 122 084317
|
[2] |
Curtis D M and Eland J H D 1985 Int. J. Mass Spectrom. Ion Processes 63 241
|
[3] |
Masuoka T 1993 Phys. Rev. A 48 1955
|
[4] |
Masuoka T and Nakamura E 1993 Phys. Rev. A 48 4379
|
[5] |
Millie P, Nenner I, Archirel P, Lablanquie P and Fournier P 1986 J. Chem. Phys. 84 1259
|
[6] |
Masuoka T and Koyano L 1991 J. Chem. Phys. 95 909
|
[7] |
Dujardin G, Leach S, Dutuit O, Guyon P M and Richard-Viard M 1984 Chem. Phys. 88 339
|
[8] |
Field T A and Eland J H D 1999 Chem. Phys. Lett. 303 144
|
[9] |
Samson J A R, Masuoka T and Pareek P N 1985 J. Chem. Phys. 83 5531
|
[10] |
Moddeman W E, Carlson T A, Krause M O, Pullen B P, Bull W E and Schweitzer K 1971 J. Chem. Phys. 55 2317
|
[11] |
Asplund L, Kelfve P, Siegbahn H, Goscinski O, Fellner-Feldegg H, Hamrin K, Blomster B and Siegbahn K 1976 Chem. Phys. Lett. 40 353
|
[12] |
White J M, Rye R R and Houston J E 1977 Chem. Phys. Lett. 46 146
|
[13] |
Shaw R W, Jen J S and Thomas T D 1977 J. Electron Spectrosc. Relat. Phenom. 11 91
|
[14] |
Camilloni R, Stefani G and Giardini-Guidoni A 1977 Chem. Phys. Lett. 50 213
|
[15] |
O'Keefe A, Illies A J, Gilbert J R and Bowers M T 1983 Chem. Phys. 82 471
|
[16] |
Appell J, Durup J, Fehsenfeld F C and Fournier P 1973 J. Phys. B: At. Mol. Opt. Phys. 6 197
|
[17] |
Langford M L and Harris F M 1993 Int. J. Mass Spectrom. Ion Processes 124 241
|
[18] |
Appell J and Horsley J A 1974 J. Chem. Phys. 60 3445
|
[19] |
Griffiths W J and Harris F M 1990 Rapid Commun. Mass Spectrom. 4 366
|
[20] |
Besnard M J, Hellner L, Malinovich Y and Dujardin G 1986 J. Chem. Phys. 85 1316
|
[21] |
Dwber G, McConkey A G, Avaldi L, MacDonald M A, King G C and Hall R I 1994 J. Phys. B: At. Mol. Opt. Phys. 27 2191
|
[22] |
Hall R I, Avaldi L, Dwber G, McConkey A G, MacDonald M A and King G C 1994 Chem. Phys. 187 125
|
[23] |
Hochlaf M, Hall R I, Penent F, Eland J H D and Lablanquie P 1998 Chem. Phys. 234 249
|
[24] |
Eland J H D, Ho S S W and Worthington H L 2003 Chem. Phys. 290 27
|
[25] |
Brites V, Eland J H D and Hochlaf M 2008 Chem. Phys. 346 23
|
[26] |
Eland J H D 2006 Chem. Phys. 323 391
|
[27] |
Kim Y B, Stephan K, Mark E and Mark T D 1981 J. Chem. Phys. 74 6771
|
[28] |
Wetmore R W and Boyd R K 1986 J. Phys. Chem. 90 6091
|
[29] |
Dorman F H and Morrison J D 1961 J. Chem. Phys. 35 575
|
[30] |
Hille E and Mark T D 1978 J. Chem. Phys. 69 4600
|
[31] |
Newton A S and Sciamanna A F 1964 J. Chem. Phys. 40 718
|
[32] |
Cooks R G, Tenvillinger D T and Beynon J H 1974 J. Chem. Phys. 61 1208
|
[33] |
Newton A S 1964 J. Chem. Phys. 40 607
|
[34] |
Mazumdar S, Marathe V R, Kumar S V K and Mathur D 1988 Int. J. Mass Spectrom. Ion Phys. 86 351
|
[35] |
Mark T D, Egger F and Cheret M 1977 J. Chem. Phys. 67 3795
|
[36] |
Langford M L, Harris F M, Reid C J, Ballantine J A and Parry D E 1991 Chem. Phys. 149 445
|
[37] |
Thulstrup P W, Thulstrup E W and Andersen A 1974 J. Chem. Phys. 60 3975
|
[38] |
Cooper D L 1986 Chem. Phys. Lett. 132 377
|
[39] |
Pettersson L G M, Siegbahn P E M, Brostriim L, Mannervik S and Larsson M 1992 Chem. Phys. Lett. 191 279
|
[40] |
Chong D P 2008 J. Chem. Phys. 128 084112
|
[41] |
Pettersson L G M, Karlsson L, Keane M P, Naves de Brito A, Correia N and Larsson M 1992 J. Chem. Phys. 96 4884
|
[42] |
Andersen L H, Posthumus J H, Vahtras O, Agren H, Elander N, Nunez A, Scrind A, Natiello M and Larsson M 1993 Phys. Rev. Lett. 71 1812
|
[43] |
Larsson M, Olsson B J and Sigray P 1989 Chem. Phys. 139 457
|
[44] |
Wetmore R W, Le Roy R J and Boyd R K 1984 J. Phys. Chem. 88 6318
|
[45] |
Hochlaf M, Bennetty F R, Chambaud G and Rosmus P 1998 J. Phys. B: At. Mol. Opt. Phys. 31 2163
|
[46] |
Taylor S, Eland J H D and Hochlaf M 2006 Chem. Phys. 330 16
|
[47] |
Tarantelli F, Tarantelli A, Sgamellotti A, Schirmer J and Cederbaum L S 1985 Chem. Phys. Lett. 117 577
|
[48] |
Li Y, Yang S P, Jia X Y and Chen J 2010 Chin. Phys. B 19 043303
|
[49] |
Wu Z F, Wu C Y, Liu X R, Deng Y K and Gong Q H 2010 J. Phys. Chem. A 114 6751
|
[50] |
Wu Z F, Wu C Y, Liu X R, Liu Y Q, Deng Y K and Gong Q H 2010 Opt. Express 18 10395
|
[51] |
Wang S S, Kong R H, Shan X B, Zhang Y W, Sheng L S, Wang Z Y, Hao L Q and Zhou S K 2006 J. Synchrotron Rad. 13 415
|
[52] |
Zang S, Wang Y M, Cao Z Z, Zhang B, Wang S S, Kong R H, Zhao Y J, Shan X B and Sheng L S 2007 Rev. Sci. Instrum. 78 043104
|
[53] |
Zhao Y J, Sun Y, Sun J D, Fang W Z, Shan X B, Liu F Y, Sheng L S and Wang Z Y 2009 J. Electron Spectrosc. Relat. Phenom. 173 24
|
[54] |
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2004 Gaussian 03 Revision C (Wallingford CT: Gaussian Inc.)
|
[55] |
Curtiss L A, Raghavachari K, Trucks G W and Pople J A 1991 J. Phys. Chem. 94 7221
|
[56] |
Curtiss L A, Raghavachari K and Pople J A 1993 J. Phys. Chem. 98 1293
|
[57] |
Baker A D and Brundle C R 1977 An Introduction to Electron Spectroscopy: Theory Techniques and Applications (Vol. 1) (New York: Academic Press) pp. 10--13
|
[58] |
Eland J H D, Wort F S, Lablanquie P and Nenner I 1986 Z. Phys. D 4 31 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|