Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 043201    DOI: 10.1088/1674-1056/20/4/043201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Synchrotron radiation VUV double photoionization of some small molecules

Zhao Yu-Jie(赵玉杰)a)b), Shan Xiao-Bin(单晓斌)b), Sheng Liu-Si(盛六四)b)† , Wang Zhen-Ya(王振亚)c), Zhang Jie(张杰)a), and Yu Chun-Ri(余春日)a)
a School of Physics and Electrical Engineering, Anqing Normal College, Anqing 246011, China; b National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China; c Laboratory of Environmental Spectroscopy, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  The VUV double photoionizations of small molecules (NO, CO, CO2, CS2, OSC and NH3) were investigated with photoionization mass spectroscopy using synchrotron radiation. The double ionization energies of molecules were determined with photoionization efficiency spectroscopy. The total energies of these molecules and their parent dications (NO2+, CO2+, CO22+, CS22+, OSC2+and NH32+) were calculated using the Gaussian 03 program and Gaussian 2 calculations. Then, the adiabatic double ionization energies of the molecules were predicated by using high accuracy energy mode. The experimental double ionization energies of these small molecules were all in reasonable agreement with their respective calculated adiabatic double ionization energies. The mechanisms of double photoionization of these molecules were discussed based on a comparison of our experimental results with those predicted theoretically. The equilibrium geometries and harmonic vibrational frequencies of molecules and their parent dications were calculated by using the MP2 (full) method. The differences in configurations between these molecules and their parent dications were also discussed on the basis of theoretical calculations.
Keywords:  double photoionization      synchrotron radiation      dication      adiabatic double ionization energy  
Received:  25 August 2010      Revised:  10 October 2010      Accepted manuscript online: 
PACS:  32.80.-t (Photoionization and excitation)  
  33.20.Ni (Vacuum ultraviolet spectra)  
  34.80.Gs (Molecular excitation and ionization)  
  82.50.-m (Photochemistry)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874167) and the Knowledge Innovation Foundation of the Chinese Academy of Sciences (Grant No. KJCX2-YW-N24).

Cite this article: 

Zhao Yu-Jie(赵玉杰), Shan Xiao-Bin(单晓斌), Sheng Liu-Si(盛六四), Wang Zhen-Ya(王振亚), Zhang Jie(张杰), and Yu Chun-Ri(余春日) Synchrotron radiation VUV double photoionization of some small molecules 2011 Chin. Phys. B 20 043201

[1] Slattery A E and Field T A 2005 J. Chem. Phys. 122 084317
[2] Curtis D M and Eland J H D 1985 Int. J. Mass Spectrom. Ion Processes 63 241
[3] Masuoka T 1993 Phys. Rev. A 48 1955
[4] Masuoka T and Nakamura E 1993 Phys. Rev. A 48 4379
[5] Millie P, Nenner I, Archirel P, Lablanquie P and Fournier P 1986 J. Chem. Phys. 84 1259
[6] Masuoka T and Koyano L 1991 J. Chem. Phys. 95 909
[7] Dujardin G, Leach S, Dutuit O, Guyon P M and Richard-Viard M 1984 Chem. Phys. 88 339
[8] Field T A and Eland J H D 1999 Chem. Phys. Lett. 303 144
[9] Samson J A R, Masuoka T and Pareek P N 1985 J. Chem. Phys. 83 5531
[10] Moddeman W E, Carlson T A, Krause M O, Pullen B P, Bull W E and Schweitzer K 1971 J. Chem. Phys. 55 2317
[11] Asplund L, Kelfve P, Siegbahn H, Goscinski O, Fellner-Feldegg H, Hamrin K, Blomster B and Siegbahn K 1976 Chem. Phys. Lett. 40 353
[12] White J M, Rye R R and Houston J E 1977 Chem. Phys. Lett. 46 146
[13] Shaw R W, Jen J S and Thomas T D 1977 J. Electron Spectrosc. Relat. Phenom. 11 91
[14] Camilloni R, Stefani G and Giardini-Guidoni A 1977 Chem. Phys. Lett. 50 213
[15] O'Keefe A, Illies A J, Gilbert J R and Bowers M T 1983 Chem. Phys. 82 471
[16] Appell J, Durup J, Fehsenfeld F C and Fournier P 1973 J. Phys. B: At. Mol. Opt. Phys. 6 197
[17] Langford M L and Harris F M 1993 Int. J. Mass Spectrom. Ion Processes 124 241
[18] Appell J and Horsley J A 1974 J. Chem. Phys. 60 3445
[19] Griffiths W J and Harris F M 1990 Rapid Commun. Mass Spectrom. 4 366
[20] Besnard M J, Hellner L, Malinovich Y and Dujardin G 1986 J. Chem. Phys. 85 1316
[21] Dwber G, McConkey A G, Avaldi L, MacDonald M A, King G C and Hall R I 1994 J. Phys. B: At. Mol. Opt. Phys. 27 2191
[22] Hall R I, Avaldi L, Dwber G, McConkey A G, MacDonald M A and King G C 1994 Chem. Phys. 187 125
[23] Hochlaf M, Hall R I, Penent F, Eland J H D and Lablanquie P 1998 Chem. Phys. 234 249
[24] Eland J H D, Ho S S W and Worthington H L 2003 Chem. Phys. 290 27
[25] Brites V, Eland J H D and Hochlaf M 2008 Chem. Phys. 346 23
[26] Eland J H D 2006 Chem. Phys. 323 391
[27] Kim Y B, Stephan K, Mark E and Mark T D 1981 J. Chem. Phys. 74 6771
[28] Wetmore R W and Boyd R K 1986 J. Phys. Chem. 90 6091
[29] Dorman F H and Morrison J D 1961 J. Chem. Phys. 35 575
[30] Hille E and Mark T D 1978 J. Chem. Phys. 69 4600
[31] Newton A S and Sciamanna A F 1964 J. Chem. Phys. 40 718
[32] Cooks R G, Tenvillinger D T and Beynon J H 1974 J. Chem. Phys. 61 1208
[33] Newton A S 1964 J. Chem. Phys. 40 607
[34] Mazumdar S, Marathe V R, Kumar S V K and Mathur D 1988 Int. J. Mass Spectrom. Ion Phys. 86 351
[35] Mark T D, Egger F and Cheret M 1977 J. Chem. Phys. 67 3795
[36] Langford M L, Harris F M, Reid C J, Ballantine J A and Parry D E 1991 Chem. Phys. 149 445
[37] Thulstrup P W, Thulstrup E W and Andersen A 1974 J. Chem. Phys. 60 3975
[38] Cooper D L 1986 Chem. Phys. Lett. 132 377
[39] Pettersson L G M, Siegbahn P E M, Brostriim L, Mannervik S and Larsson M 1992 Chem. Phys. Lett. 191 279
[40] Chong D P 2008 J. Chem. Phys. 128 084112
[41] Pettersson L G M, Karlsson L, Keane M P, Naves de Brito A, Correia N and Larsson M 1992 J. Chem. Phys. 96 4884
[42] Andersen L H, Posthumus J H, Vahtras O, Agren H, Elander N, Nunez A, Scrind A, Natiello M and Larsson M 1993 Phys. Rev. Lett. 71 1812
[43] Larsson M, Olsson B J and Sigray P 1989 Chem. Phys. 139 457
[44] Wetmore R W, Le Roy R J and Boyd R K 1984 J. Phys. Chem. 88 6318
[45] Hochlaf M, Bennetty F R, Chambaud G and Rosmus P 1998 J. Phys. B: At. Mol. Opt. Phys. 31 2163
[46] Taylor S, Eland J H D and Hochlaf M 2006 Chem. Phys. 330 16
[47] Tarantelli F, Tarantelli A, Sgamellotti A, Schirmer J and Cederbaum L S 1985 Chem. Phys. Lett. 117 577
[48] Li Y, Yang S P, Jia X Y and Chen J 2010 Chin. Phys. B 19 043303
[49] Wu Z F, Wu C Y, Liu X R, Deng Y K and Gong Q H 2010 J. Phys. Chem. A 114 6751
[50] Wu Z F, Wu C Y, Liu X R, Liu Y Q, Deng Y K and Gong Q H 2010 Opt. Express 18 10395
[51] Wang S S, Kong R H, Shan X B, Zhang Y W, Sheng L S, Wang Z Y, Hao L Q and Zhou S K 2006 J. Synchrotron Rad. 13 415
[52] Zang S, Wang Y M, Cao Z Z, Zhang B, Wang S S, Kong R H, Zhao Y J, Shan X B and Sheng L S 2007 Rev. Sci. Instrum. 78 043104
[53] Zhao Y J, Sun Y, Sun J D, Fang W Z, Shan X B, Liu F Y, Sheng L S and Wang Z Y 2009 J. Electron Spectrosc. Relat. Phenom. 173 24
[54] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2004 Gaussian 03 Revision C (Wallingford CT: Gaussian Inc.)
[55] Curtiss L A, Raghavachari K, Trucks G W and Pople J A 1991 J. Phys. Chem. 94 7221
[56] Curtiss L A, Raghavachari K and Pople J A 1993 J. Phys. Chem. 98 1293
[57] Baker A D and Brundle C R 1977 An Introduction to Electron Spectroscopy: Theory Techniques and Applications (Vol. 1) (New York: Academic Press) pp. 10--13
[58] Eland J H D, Wort F S, Lablanquie P and Nenner I 1986 Z. Phys. D 4 31 endfootnotesize
[1] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[2] Laser-assisted XUV double ionization of helium atoms: Intensity dependence of joint angular distributions
Fengzheng Zhu(朱风筝), Genliang Li(黎根亮), Aihua Liu(刘爱华). Chin. Phys. B, 2020, 29(7): 073202.
[3] Pressure-induced isostructural phase transition in α-Ni(OH)2 nanowires
Xin Ma(马鑫), Zhi-Hui Li(李志慧), Xiao-Ling Jing(荆晓玲), Hong-Kai Gu(顾宏凯), Hui Tian(田辉), Qing Dong(董青), Peng Wang(王鹏), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), Zhen Yao(姚震), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2019, 28(6): 066402.
[4] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[5] Structural stability of ultra-high temperature refractory material MoSi2 and Mo5Si3 under high pressure
Hao Liang(梁浩), Fang Peng(彭放), Cong Fan(樊聪), Qiang Zhang(张强), Jing Liu(刘景), Shi-Xue Guan(管诗雪). Chin. Phys. B, 2017, 26(5): 053101.
[6] Anomalous behavior and phase transformation of α -GaOOH nanocrystals under static compression
Zhao Zhang(张钊), Hang Cui(崔航), Da-Peng Yang(杨大鹏), Jian Zhang(张剑), Shun-Xi Tang(汤顺熙), Si Wu(吴思), Qi-Liang Cui(崔啟良). Chin. Phys. B, 2017, 26(10): 106402.
[7] Observation of selective surface element substitution in FeTe0.5Se0.5 superconductor thin film exposed to ambient air bysynchrotron radiation spectroscopy
Nian Zhang(张念), Chen Liu(刘晨), Jia-Li Zhao(赵佳丽), Tao Lei(雷涛), Jia-Ou Wang(王嘉鸥), Hai-Jie Qian(钱海杰), Rui Wu(吴蕊), Lei Yan(颜雷), Hai-Zhong Guo(郭海中), Kurash Ibrahim(奎热西). Chin. Phys. B, 2016, 25(9): 097402.
[8] High pressure x-ray diffraction techniques with synchrotron radiation
Jing Liu(刘景). Chin. Phys. B, 2016, 25(7): 076106.
[9] Temperature effect on the electronic structure of Nb:SrTiO3 (100) surface
Zhang Shuang-Hong (张双红), Wang Jia-Ou (王嘉鸥), Qian Hai-Jie (钱海杰), Wu Rui (吴蕊), Zhang Nian (张念), Lei Tao (雷涛), Liu Chen (刘晨), Kurash Ibrahim (奎热西·伊布拉欣). Chin. Phys. B, 2015, 24(2): 027901.
[10] Improvement and error analysis of quantitative information extraction in diffraction-enhanced imaging
Yang Hao (杨浩), Xuan Rui-Jiao (轩瑞娇), Hu Chun-Hong (胡春红), Duan Jing-Hao (段敬豪). Chin. Phys. B, 2014, 23(4): 048701.
[11] Penetrating view of nano-structures in Aleochara verna spermatheca and flagellum by hard X-ray microscopy
Zhang Kai (张凯), Li Dee (李德娥), Hong You-Li (洪友丽), Zhu Pei-Ping (朱佩平), Yuan Qing-Xi (袁清习), Huang Wan-Xia (黄万霞), Gao Kun (高昆), Zhou Hong-Zhang (周红章), Wu Zi-Yu (吴自玉). Chin. Phys. B, 2013, 22(7): 076801.
[12] Polycapillary X-ray lens for secondary focusing Beijing synchrotron radiation source
Li Yu-De (李玉德), Lin Xiao-Yan (林晓燕), Liu Shi-Gang (刘世岗), He Jin-Long (何金龙), Guo Fei (郭非), Sun Tian-Xi (孙天希), Liu Peng (刘鹏). Chin. Phys. B, 2013, 22(4): 044103.
[13] Band alignment of Ga2O3/6H-SiC heterojunction
Chang Shao-Hui(常少辉), Chen Zhi-Zhan(陈之战), Huang Wei(黄维), Liu Xue-Chao(刘学超), Chen Bo-Yuan(陈博源), Li Zheng-Zheng(李铮铮), and Shi Er-Wei(施尔畏) . Chin. Phys. B, 2011, 20(11): 116101.
[14] Energy band alignment of PbTe/CdTe(111) interface determined by ultraviolet photoelectron spectra using synchrotron radiation
Cai Chun-Feng(蔡春锋), Wu Hui-Zhen(吴惠桢), Si Jian-Xiao(斯剑霄), Jin Shu-Qiang(金树强), Zhang Wen-Hua(张文华), Xu Yang(许杨), and Zhu Jun-Fa(朱骏发). Chin. Phys. B, 2010, 19(7): 077301.
[15] Preferred clusters in metallic glasses
Yang Liang(杨亮) and Guo Gu-Qing(郭古青). Chin. Phys. B, 2010, 19(12): 126101.
No Suggested Reading articles found!