Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 037806    DOI: 10.1088/1674-1056/20/3/037806
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Systematic study on visible light collimation by nanostructured slits in the metal surface

Fu Jin-Xin(傅晋欣), Hua Yi-Lei(华一磊), Chen Yu-Hui(陈宇辉), Liu Rong-Juan(刘荣鹃), Li Jia-Fang(李家方), and Li Zhi-Yuan(李志远)
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We present a systematic experimental investigation on visible light collimation by a nanostructured slit flanked with a pair of periodic array of grooves in gold thin film. A wide variety of aspects are considered, such as the polarization state, the transport path of incident light, the groove–groove spacing, the groove width and depth. Our results clearly show that the relationship between the collimation wavelength and the periodicity of the slit-groove structure accords well with the surface plasmon dispersion model proposed by previous researchers. Furthermore, the surface plasmon wave phase retardation effect induced by the surface structure is also verified via the measurement for samples with different groove widths and depths. These results indicate that the detailed geometry of the groove structure has obvious impacts on the collimation effect and the angular distribution of the diffraction light in the subwavelength plasmonic system.
Keywords:  surface plasmon      collimation  
Received:  28 September 2010      Revised:  22 November 2010      Accepted manuscript online: 
PACS:  78.66.-w (Optical properties of specific thin films)  
  42.25.Fx (Diffraction and scattering)  
  42.79.Dj (Gratings)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60736041 and 10874238), and the National Key Basic Research Special Foundation of China (Grant No. 2007CB613205).

Cite this article: 

Fu Jin-Xin(傅晋欣), Hua Yi-Lei(华一磊), Chen Yu-Hui(陈宇辉), Liu Rong-Juan(刘荣鹃), Li Jia-Fang(李家方), and Li Zhi-Yuan(李志远) Systematic study on visible light collimation by nanostructured slits in the metal surface 2011 Chin. Phys. B 20 037806

[1] Barnes W L, Dereux A and Ebbesen T W 2004 Nature 424 824
[2] Maier S A 2007 Plasmonics: Fundamentals and Applications (Bath, UK: Springer)
[3] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[4] Kim T J, Thio T, Ebbesen T W, Grupp D E and Lezec H J 1999 Opt. Lett. 24 256
[5] Mart'hin-Moreno L, Garc'hia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B and Ebbesen T W 2001 Phys. Rev. Lett. bf 86 1114
[6] Barnes W L, Murray W A, Dintinger J, Devaux E and Ebbesen T W 2004 em Phys. Rev. Lett. 92 107401
[7] Fang X, Li Z Y, Long Y B, Wei H X, Liu R J, Ma J, Kamran M, Zhao H, Han X, Zhao B and Qiu X 2007 Phys. Rev. Lett. 99 066805
[8] Sun M, Li Z Y, Cheng B Y, Zhang D Z, Yang H and Jin A 2007 Phys. Lett. A 365 510
[9] Sun M, Liu R J, Li Z Y, Feng S, Cheng B Y, Zhang D Z, Yang H and Jin A 2006 Phys. Rev. B 74 193404
[10] Ruan Z and Qiu M 2006 Phys. Rev. Lett. 96 233901
[11] Hua Y L, Fu J X, Li J Y, Li Z Y and Yang H F 2010 Chin. Phys. B bf 19 047309
[12] Gong Z Q and Liu J Q 2010 Chin. Phys. B 19 067303
[13] Cobley C M, Rycenga M, Zhou F, Li Z Y and Xia Y 2009 Angew. Chem. Int. Ed. 48 4824
[14] Lim B, Kobayashi H, Yu T, Wang J, Kim M J, Li Z Y, Rycenga M and Xia Y 2010 J. Am. Chen. Soc. 132 2506
[15] Li Z Y and Xia Y 2010 Nano Lett. 10 243
[16] Wang W, Wu S, Reinhardt K, Lu Y and Chen S 2010 Nano Lett. 10 2012
[17] Sha W E I, Choy W C H and Chew W C 2010 Opt. Express 18 5993
[18] Akimov Yu A, Ostrikov K and Li E. P 2009 Plasmonics 4 107
[19] Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T and Scherer A 2006 JOSA B 23 1674
[20] Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, Garcia-Vidal F J and Ebbesen T W 2002 Science 297 820
[21] Mart'hin-Moreno L, Garc'hia-Vidal F J, Lezec H J, Degiron A and Ebbesen T W 2003 Phys. Rev. Lett. 90 167401
[22] Garc'hia-Vidal F J, Lezec H J, Ebbesen T W and Mart'hin-Moreno L 2003 Phys. Rev. Lett. 90 213901
[23] Verslegers L, Catrysse P B, Yu Z, White J S, Barnard E S, Brongersma M L and Fan S 2009 Nano Lett. 9 235
[24] Lin L, Goh X M, McGuinness L P and Roberts A 2010 Nano Lett. 10 1936
[25] Srituravanich W, Pan L, Wang Y, Sun C, Bogy D B and Zhang X 2008 Nat. Nanotechnology 3 733
[26] Yu N, Fan J, Wang Q, Pfl"ugl C, Diehl L, Edamura T, Yamanishi M, Kan H and Capasso F 2008 Nat. Photonics 2 564
[27] Hua L Y and Li Z Y 2009 J. Appl. Phys. 105 013104
[28] Hibbins A P, Sambles J R and Lawrence C R 2002 Appl. Phys. Lett. 81 4661
[29] Lockyear M J, Hibbins A P, Sambles J R and Lawrence C R 2004 Appl. Phys. Lett. 84 2040
[30] Lin D Z, Chang C K, Chen Y C, Yang D L, Lin M W, Yeh J T, Liu J M, Kuan C H, Yeh C S and Lee C K 2006 Opt. Express 14 3503
[31] Liu H and Lalanne P 2008 Nature 452 728 endfootnotesize
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[9] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[10] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[11] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[12] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[13] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[14] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[15] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
No Suggested Reading articles found!