CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Systematic study on visible light collimation by nanostructured slits in the metal surface |
Fu Jin-Xin(傅晋欣), Hua Yi-Lei(华一磊), Chen Yu-Hui(陈宇辉), Liu Rong-Juan(刘荣鹃), Li Jia-Fang(李家方), and Li Zhi-Yuan(李志远)† |
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We present a systematic experimental investigation on visible light collimation by a nanostructured slit flanked with a pair of periodic array of grooves in gold thin film. A wide variety of aspects are considered, such as the polarization state, the transport path of incident light, the groove–groove spacing, the groove width and depth. Our results clearly show that the relationship between the collimation wavelength and the periodicity of the slit-groove structure accords well with the surface plasmon dispersion model proposed by previous researchers. Furthermore, the surface plasmon wave phase retardation effect induced by the surface structure is also verified via the measurement for samples with different groove widths and depths. These results indicate that the detailed geometry of the groove structure has obvious impacts on the collimation effect and the angular distribution of the diffraction light in the subwavelength plasmonic system.
|
Received: 28 September 2010
Revised: 22 November 2010
Accepted manuscript online:
|
PACS:
|
78.66.-w
|
(Optical properties of specific thin films)
|
|
42.25.Fx
|
(Diffraction and scattering)
|
|
42.79.Dj
|
(Gratings)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60736041 and 10874238), and the National Key Basic Research Special Foundation of China (Grant No. 2007CB613205). |
Cite this article:
Fu Jin-Xin(傅晋欣), Hua Yi-Lei(华一磊), Chen Yu-Hui(陈宇辉), Liu Rong-Juan(刘荣鹃), Li Jia-Fang(李家方), and Li Zhi-Yuan(李志远) Systematic study on visible light collimation by nanostructured slits in the metal surface 2011 Chin. Phys. B 20 037806
|
[1] |
Barnes W L, Dereux A and Ebbesen T W 2004 Nature 424 824
|
[2] |
Maier S A 2007 Plasmonics: Fundamentals and Applications (Bath, UK: Springer)
|
[3] |
Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
|
[4] |
Kim T J, Thio T, Ebbesen T W, Grupp D E and Lezec H J 1999 Opt. Lett. 24 256
|
[5] |
Mart'hin-Moreno L, Garc'hia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B and Ebbesen T W 2001 Phys. Rev. Lett. bf 86 1114
|
[6] |
Barnes W L, Murray W A, Dintinger J, Devaux E and Ebbesen T W 2004 em Phys. Rev. Lett. 92 107401
|
[7] |
Fang X, Li Z Y, Long Y B, Wei H X, Liu R J, Ma J, Kamran M, Zhao H, Han X, Zhao B and Qiu X 2007 Phys. Rev. Lett. 99 066805
|
[8] |
Sun M, Li Z Y, Cheng B Y, Zhang D Z, Yang H and Jin A 2007 Phys. Lett. A 365 510
|
[9] |
Sun M, Liu R J, Li Z Y, Feng S, Cheng B Y, Zhang D Z, Yang H and Jin A 2006 Phys. Rev. B 74 193404
|
[10] |
Ruan Z and Qiu M 2006 Phys. Rev. Lett. 96 233901
|
[11] |
Hua Y L, Fu J X, Li J Y, Li Z Y and Yang H F 2010 Chin. Phys. B bf 19 047309
|
[12] |
Gong Z Q and Liu J Q 2010 Chin. Phys. B 19 067303
|
[13] |
Cobley C M, Rycenga M, Zhou F, Li Z Y and Xia Y 2009 Angew. Chem. Int. Ed. 48 4824
|
[14] |
Lim B, Kobayashi H, Yu T, Wang J, Kim M J, Li Z Y, Rycenga M and Xia Y 2010 J. Am. Chen. Soc. 132 2506
|
[15] |
Li Z Y and Xia Y 2010 Nano Lett. 10 243
|
[16] |
Wang W, Wu S, Reinhardt K, Lu Y and Chen S 2010 Nano Lett. 10 2012
|
[17] |
Sha W E I, Choy W C H and Chew W C 2010 Opt. Express 18 5993
|
[18] |
Akimov Yu A, Ostrikov K and Li E. P 2009 Plasmonics 4 107
|
[19] |
Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T and Scherer A 2006 JOSA B 23 1674
|
[20] |
Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, Garcia-Vidal F J and Ebbesen T W 2002 Science 297 820
|
[21] |
Mart'hin-Moreno L, Garc'hia-Vidal F J, Lezec H J, Degiron A and Ebbesen T W 2003 Phys. Rev. Lett. 90 167401
|
[22] |
Garc'hia-Vidal F J, Lezec H J, Ebbesen T W and Mart'hin-Moreno L 2003 Phys. Rev. Lett. 90 213901
|
[23] |
Verslegers L, Catrysse P B, Yu Z, White J S, Barnard E S, Brongersma M L and Fan S 2009 Nano Lett. 9 235
|
[24] |
Lin L, Goh X M, McGuinness L P and Roberts A 2010 Nano Lett. 10 1936
|
[25] |
Srituravanich W, Pan L, Wang Y, Sun C, Bogy D B and Zhang X 2008 Nat. Nanotechnology 3 733
|
[26] |
Yu N, Fan J, Wang Q, Pfl"ugl C, Diehl L, Edamura T, Yamanishi M, Kan H and Capasso F 2008 Nat. Photonics 2 564
|
[27] |
Hua L Y and Li Z Y 2009 J. Appl. Phys. 105 013104
|
[28] |
Hibbins A P, Sambles J R and Lawrence C R 2002 Appl. Phys. Lett. 81 4661
|
[29] |
Lockyear M J, Hibbins A P, Sambles J R and Lawrence C R 2004 Appl. Phys. Lett. 84 2040
|
[30] |
Lin D Z, Chang C K, Chen Y C, Yang D L, Lin M W, Yeh J T, Liu J M, Kuan C H, Yeh C S and Lee C K 2006 Opt. Express 14 3503
|
[31] |
Liu H and Lalanne P 2008 Nature 452 728 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|