CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Investigation of yellow luminescence intensity of N-polar unintentionally doped GaN |
Du Da-Chao(杜大超)†, Zhang Jin-Cheng(张进成), Ou Xin-Xiu(欧新秀), Wang Hao(王昊), Chen Ke(陈珂), Xue Jun-Shuai(薛军帅), Xu Sheng-Rui(许晟瑞), and Hao Yue(郝跃) |
Key Laboratory of Wide Band-Gap Semiconductors and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract This paper reports that the yellow luminescence intensity of N-polar GaN Epi-layers is much lower than that of Ga-polar ones due to the inverse polarity, and reduces drastically in the N-polar unintentionally-doped GaN after etching in KOH solution. The ratio of yellow luminescence intensity to band-edge emission intensity decreases sharply with the etching time. The full width at half maximum of x-ray diffraction of (10-12) plane falls sharply after etching, and the surface morphology characterized by scanning electron microscope shows a rough surface that changes with the etching time. The mechanism for the generation of the yellow luminescence are explained in details.
|
Received: 19 July 2010
Revised: 01 November 2010
Accepted manuscript online:
|
PACS:
|
78.55.Cr
|
(III-V semiconductors)
|
|
71.55.Eq
|
(III-V semiconductors)
|
|
81.65.Cf
|
(Surface cleaning, etching, patterning)
|
|
Fund: Project supported by the National Key Science & Technology Special Project (Grant No. 2008ZX01002-002), the Major Program and Key Program of National Natural Science Foundation of China (Grant Nos. 60890191 and 60736033), and the Chinese Advance Research Program of Science and Technology (Grant Nos. 51308040301, 51308030102, 51311050112, and 51323030207). |
Cite this article:
Du Da-Chao(杜大超), Zhang Jin-Cheng(张进成), Ou Xin-Xiu(欧新秀), Wang Hao(王昊), Chen Ke(陈珂), Xue Jun-Shuai(薛军帅), Xu Sheng-Rui(许晟瑞), and Hao Yue(郝跃) Investigation of yellow luminescence intensity of N-polar unintentionally doped GaN 2011 Chin. Phys. B 20 037805
|
[1] |
Strite S and Morkocc H 1992 J. Vac. Sci. Technol. B 10 1237
|
[2] |
Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Sugimoto Y and Kiyoku H 1996 Appl. Phys. Lett. 69 3034
|
[3] |
Kuramata A, Domen K, Soejima R, Horino K, Kubota S I and Tanahashi T 1997 Jpn. J. Appl. Phys. (Part 2) 36 1130
|
[4] |
Fan Z, Mohammad S N, Aktas O, Botchkarev A E, Salvador A and Morkocc H 1996 Appl. Phys. Lett. 69 1229
|
[5] |
Reshchikov M A and Morkocc H 2005 J. Appl. Phys. 97 061301
|
[6] |
Neugebauer J and van de Walle C G 1996 Appl. Phys. Lett. 69 503
|
[7] |
Colton J S, Yu P Y, Teo K L, Weber E R, Perlin P, Grzegory I and Uchida K 1999 Appl. Phys. Lett. 75 3273
|
[8] |
Shi J Y, Yu L P, Wang Y Z, Zhang G Y and Zhang H 2002 Appl. Phys. Lett. 80 2293
|
[9] |
Armitage R, Hong W, Yang Q, Feick H, Gebauer J and Weber E R 2003 Appl. Phys. Lett. 82 3457
|
[10] |
Zhao D G, Jiang D S, Yang H, Zhu J J, Liu Z S, Zhang S M and Liang J W 2006 Appl. Phys. Lett. 88 241917
|
[11] |
Zhao D G, Jiang D S, Zhu J J, Liu Z S, Wang H, Zhang S M, Wang Y T and Yang H 2009 Appl. Phys. Lett. 95 041901
|
[12] |
Fichtenbaum N A, Mates T E, Keller S, Den Baars S P and Mishra U K 2008 Journal of Crystal Growth 310 1124
|
[13] |
Sumiya M, Yoshimura K, Ito T, Ohtsuka K and Fuke S 2000 J. Appl. Phys. 88 1158
|
[14] |
Reshchikov M A 2006 Appl. Phys. Lett. 89 232106
|
[15] |
Sun Q, Cho Y S, Lee I H, Han J, Kong B H and Cho H K 2008 Appl. Phys. Lett. 93 131912
|
[16] |
Sun Q, Cho Y S, Kong B H, Cho H K, Ko T S, Yerino C D, Lee I H and Han J 2009 Journal of Crystal Growth 311 2948
|
[17] |
Mikroulis S, Georgakilas A, Kostopoulos A, Cimalla V and Dimakis E 2002 Appl. Phys. Lett. 80 2886
|
[18] |
Zywietz T K, Neugebauer J and Scheffler M 1999 Appl. Phys. Lett. 74 1695
|
[19] |
Grzegorczyka A P, Hagemana P R, Weyhera J L and Larsen P K 2005 Journal of Crystal Growth 283 72 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|