Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 034209    DOI: 10.1088/1674-1056/20/3/034209
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Investigation of the influence of extra noises in seed beams on continuous-variable entanglement generation

Shang Ya-Na(商娅娜),Yan Zhi-Hui(闫智辉),Jia Xiao-Jun(贾晓军), Su Xiao-Long(苏晓龙),and Xie Chang-De(谢常德)
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  The influence of the extra classical noises in seed beams on the entanglement between the signal and the idler modes of the output fields generated by a non-degenerate optical parametric amplifier operating at deamplification is investigated theoretically and experimentally. With the increase of the extra classical noises in the seed beams, the correlation degree of the output entangled optical fields, which is scaled by the quantum noise limit, decreases rapidly. The experimental results are in good agreement with the theoretical calculations.
Keywords:  quantum entanglement      continuous variable      classical noise  
Received:  24 February 2010      Revised:  01 November 2010      Accepted manuscript online: 
PACS:  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 60736040 and 11074157), Project for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 60821004), the National Basic Research Program of China (Grant No. 2010CB923103).

Cite this article: 

Shang Ya-Na(商娅娜),Yan Zhi-Hui(闫智辉),Jia Xiao-Jun(贾晓军), Su Xiao-Long(苏晓龙),and Xie Chang-De(谢常德) Investigation of the influence of extra noises in seed beams on continuous-variable entanglement generation 2011 Chin. Phys. B 20 034209

[1] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513
[2] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[3] Jia X J, Su X L, Pan Q, Gao J R, Xie C D and Peng K C 2004 Phys. Rev. Lett. 93 250503
[4] Li X Y, Pan Q, Jing J T, Zhang J, Xie C D and Peng K C 2002 Phys. Rev. Lett. 88 047904
[5] Menicucci N C, van Loock P, Gu M, Weedbrook C, Ralph T C and Nielsen M A 2006 Phys. Rev. Lett. 97 110501
[6] Yoshikawa J I, Miwa Y, Huck A, Andersen U L, van Loock P and Furusawa A 2008 Phys. Rev. Lett. 101 250501
[7] Tan A H, Xie C D and Peng K C 2009 Phys. Rev. A 79 042338
[8] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
[9] Simon R 2000 Phys. Rev. Lett. 84 2726 bibitem1o van Loock P and Furusawa A 2003 Phys. Rev. A 67 052315
[11] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A bf 61 052306
[12] Adesso G and Illuminati F 2006 New J. Phys. 8 15
[13] Adesso G, Serafini A and Illuminati F 2006 Phys. Rev. A bf 73 032345
[14] Leuchs G, Silberhorn Ch, Konig F, Lam P K, Sizmann A and Korolkova N 2003 Quantum Information with Continuous Variables (Dordrecht: Kluwer Akademic Press) pp379--422
[15] Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys. Rev. Lett. 68 3663
[16] Zhang J and Peng K C 2000 Phys. Rev. A 62 064302
[17] Reid M D and Drummond P D 1988 Phys. Rev. Lett. 60 2731
[18] Zhang W M, Feng D H and Gilmore R 1990 Rev. Mod. Phys. 62 867
[19] Li X Y, Pan Q, Jing J T, Xie C D and Peng K C 2002 Opt. Commun. 201 165
[20] Zhang Y, Su H, Xie C D and Peng K C 1999 Phys. Lett. A 259 171
[21] Bachor H A and Ralph T C 2004 A Guide to Experiments in Quantum Optics (Berlin: Wiley-VCH Verlag GmbH & Co. KGaA) p203
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[5] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[6] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[7] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[8] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[9] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[10] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[11] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[12] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[13] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[14] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[15] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
No Suggested Reading articles found!