Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 106202    DOI: 10.1088/1674-1056/21/10/106202
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of twin and stacking faults on the deformation behaviors of Al nanowires under tension loading

An Min-Rong (安敏荣), Song Hai-Yang (宋海洋), Su Jin-Fang (苏锦芳)
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  The effects of twin spacing and temperature on the deformation behavior of nanotwinned Al under tensile loading are investigated using a molecular dynamic (MD) simulation method. The result shows that the yield strength of nanotwinned Al decreases with the increase of twin spacing, which is related to the repulsive force between twin boundary and the dislocation. The result also shows that there is no strain-hardening at the yield point. On the contrary, the stress is raised by strain hardening in the plastic stage. In addition, we also investigate the effects of stacking fault thickness and temperature on the yield strength of the Al nanowire. The simulation results indicate that the stacking fault may strengthen the Al nanowire when the thickness of the stacking fault is below a critical value.
Keywords:  molecular dynamic simulation      deformation twin      stacking fault  
Received:  14 March 2012      Revised:  16 April 2012      Accepted manuscript online: 
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  61.46.-w (Structure of nanoscale materials)  
  64.70.Nd (Structural transitions in nanoscale materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10902083) and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).
Corresponding Authors:  An Min-Rong, Song Hai-Yang     E-mail:  amr_lr@sohu.com; gsfshy@sohu.com

Cite this article: 

An Min-Rong (安敏荣), Song Hai-Yang (宋海洋), Su Jin-Fang (苏锦芳) Effects of twin and stacking faults on the deformation behaviors of Al nanowires under tension loading 2012 Chin. Phys. B 21 106202

[1] Tian H C, Liu L and Wen Y H 2010 Acta Phys. Sin. 59 1957 (in Chinese)
[2] Wen Y H, Shao G F and Zhu Z Z 2008 Acta Phys. Sin. 57 1013 (in Chinese)
[3] Song H Y and Li Y L 2012 J. Appl. Phys. 111 044322
[4] Yang Z Y and Zhao Y P 2007 Surf. Rev. Lett. 14 661
[5] Li D F, Li B L, Xiao H Y and Dong H N 2011 Chin. Phys. B 20 067101
[6] Xie H X, Wang C Y, Yu T and Du J P 2009 Chin. Phys. B 18 251
[7] Deng C and Sansoz F 2009 Nano. Lett. 9 1517
[8] Li X Y, Wei Y J, Lu L, Lu K and Gao H J 2009 Nature 464 877
[9] Lu L, Chen X, Huang X and Lu K 2009 Science 323 607
[10] Cao A J and Wei Y G 2007 J. Appl. Phys. 102 083511
[11] Shabib I and Miller R E 2009 Acta Mater. 57 4364
[12] Kulkarni Y and Asaro R J 2009 Acta Mater. 57 4835
[13] Zhang Y G, Lu J, Zhang H W and Chen Z 2009 Scripta Mater. 60 508
[14] Guo X and Xia Y Z 2011 Acta Mater. 59 2350
[15] Chen X H, Lu L and Lu K 2011 Scripta Mater. 64 311
[16] Stukowski A, Albe K and Farkas D 2010 Phys. Rev. B 82 224103
[17] Wang Y B, Sui M L and Ma E 2007 Phil. Mag. Lett. 87 935
[18] Froseth A, van Swygenhoven H and Derlet P M 2004 Acta Mater. 52 2259
[19] Cao A J, Wei Y G and Mao S X 2007 Appl. Phys. Lett. 90 151909
[20] Zhang Y F and Huang H C 2009 Nanoscale. Res. Lett. 4 34
[21] Wei Y J 2011 Phys. Rev. B 83 132104
[22] Dong M H, Han P D, Zhang C L, Yang Y Q, Zhang L L and Li H F 2011 Acta Metall. Sin. 47 573 (in Chinese)
[23] Han J, Su X M, Jin Z H and Zhu Y T 2011 Scripta Mater. 64 693
[24] Zhu Y T, Liao X Z and Wu X L 2012 Prog. Mater. Sci. 57 1
[25] Kibey S, Liu J B, Johnson D D and Sehitoglu H 2007 Acta Mater. 55 6843
[26] Datta A, Srirangarajan A, Waghmare U V, Ramamurty U and To A C 2011 Comput. Mater. Sci. 50 3342
[27] Cleri F and Rosato V 1993 Phys. Rev. B 48 22
[28] Melchionna S, Ciccotti G and Holian B L 1993 Mol. Phys. 78 533
[29] Faken D and Jonsson H 1994 Compos. Mater. Sci. 2 279
[30] Stukowski A 2010 Modelling. Simul. Mater. Sci. Eng. 18 015012
[31] Deng C and Sansoz F 2009 Acta Mater. 57 6090
[32] Yang Z Y, Lu Z X and Zhao Y P 2009 Comput. Mater. Sci. 46 142
[33] Cao A J, Wei Y G and Mao S X 2008 Scripta Mater. 59 219
[34] Song H Y and Li Y L 2012 Phys. Lett. A 376 529
[1] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[2] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[3] Atomistic simulations of the lubricative mechanism of a nano-alkane lubricating film between two layers of Cu-Zn alloy
Jing Li(李京), Peng Zhu(朱鹏), Yuan-Yuan Sheng(盛圆圆), Lin Liu(刘麟), and Yong Luo(罗勇). Chin. Phys. B, 2021, 30(8): 080205.
[4] Hexagonal arrangement of phospholipids in bilayer membranes
Xiao-Wei Chen(陈晓伟), Ming-Xia Yuan(元明霞), Han Guo(郭晗), Zhi Zhu(朱智). Chin. Phys. B, 2020, 29(3): 030505.
[5] Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026401.
[6] Tail-structure regulated phase behaviors of a lipid bilayer
Wenwen Li(李文文), Zhao Lin(林召), Bing Yuan(元冰), and Kai Yang(杨恺)\ccclink. Chin. Phys. B, 2020, 29(12): 128701.
[7] Structural model of substitutional sulfur in diamond
Hongyu Yu(于洪雨), Nan Gao(高楠), Hongdong Li(李红东), Xuri Huang(黄旭日), Defang Duan(段德芳), Kuo Bao(包括), Mingfeng Zhu(朱明枫), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(8): 088102.
[8] Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults
Hong-Ping Yang(杨宏平), Wen-Juan Yuan(原文娟), Jun Luo(罗俊), Jing Zhu(朱静). Chin. Phys. B, 2019, 28(7): 078106.
[9] Study of structural and magnetic properties of Fe80P9B11 amorphous alloy by ab initio molecular dynamic simulation
Li Zhu(朱力), Yin-Gang Wang(王寅岗), Cheng-Cheng Cao(曹成成), Yang Meng(孟洋). Chin. Phys. B, 2017, 26(6): 067101.
[10] Molecular dynamic simulation of the thermodynamic and kinetic properties of nucleotide base pair
Yu-Jie Wang(王宇杰), Zhen Wang(王珍), Yan-Li Wang(王晏莉), Wen-Bing Zhang(张文炳). Chin. Phys. B, 2017, 26(12): 128705.
[11] Molecular dynamics simulation on generalized stacking fault energies of FCC metals under preloading stress
Zhang Liang (张亮), Lü Cheng (吕程), Tieu Kiet, Zhao Xing (赵星), Pei Lin-Qing (裴林清), Michal Guillaume. Chin. Phys. B, 2015, 24(8): 088106.
[12] Stacking fault energy, yield stress anomaly, and twinnability of Ni3Al: A first principles study
Liu Li-Li (刘利利), Wu Xiao-Zhi (吴小志), Wang Rui (王锐), Li Wei-Guo (李卫国), Liu Qing (刘庆). Chin. Phys. B, 2015, 24(7): 077102.
[13] Effect of twin boundary on nanoimprint process of bicrystal Al thin film studied by molecular dynamics simulation
Xie Yue-Hong (谢月红), Xu Jian-Gang (徐建刚), Song Hai-Yang (宋海洋), Zhang Yun-Guang (张云光). Chin. Phys. B, 2015, 24(2): 026201.
[14] Temperature-dependent photoluminescence spectra of GaN epitaxial layer grown on Si (111) substrate
Zhao Dan-Mei (赵丹梅), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Liu Zong-Shun (刘宗顺), Zhu Jian-Jun (朱建军), Chen Ping (陈平), Liu Wei (刘炜), Li Xiang (李翔), Shi Ming (侍铭). Chin. Phys. B, 2015, 24(10): 108101.
[15] Effect of Re on stacking fault nucleation under shear strain in Ni by atomistic simulation
Liu Zheng-Guang (刘争光), Wang Chong-Yu (王崇愚), Yu Tao (于涛). Chin. Phys. B, 2014, 23(11): 110208.
No Suggested Reading articles found!