Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 026801    DOI: 10.1088/1674-1056/20/2/026801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Surface reconstruction on stishovite SiO2, HfO2 and rutile TiO2 (001)

Tang Fu-Ling(汤富领)a)b)† , Yue Rui(岳瑞) b), and Lu Wen-Jiang(路文江)b)
a State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Department of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; b  Key Laboratory of Non-ferrous Metal Alloys and Processing of Ministry of EducatioKey Laboratory of Non-ferrous Metal Alloys and Processing of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
Abstract  This paper systematically investigates the surface reconstruction processes and patterns on stishovite SiO2, HfO2 and rutile TiO2 (001) by using classical molecular dynamics. It is found that these three surfaces relax instead of reconstruction at 0 K, and have little possibility to reconstruct below 40 K. Above 40 K, surface reconstructions take place as collective atomic motion which can be speeded by higher temperature or compressed strain. Several reconstruction patterns with approximate surface energies are found, and electrostatic potentials on them are also provided in comparison with possible microscopic results.
Keywords:  surface reconstruction      molecular dynamics      oxides  
Received:  16 July 2010      Revised:  24 August 2010      Accepted manuscript online: 
PACS:  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10964003), the Natural Science Foundation of Gansu Province (Grant No. 096RJZA102), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20096201120002) and the China Postdoctoral Science Foundation (Grant No. 20100470886).

Cite this article: 

Tang Fu-Ling(汤富领), Yue Rui(岳瑞), and Lu Wen-Jiang(路文江) Surface reconstruction on stishovite SiO2, HfO2 and rutile TiO2 (001) 2011 Chin. Phys. B 20 026801

[1] Chao E C T, Fahey J J, Littler J and Milton D J 1962 J. Geophys. Res. 67 419
[2] Först C J, Ashman C R, Schwarz K and Bloch P E 2004 Nature 427 53
[3] Bechstein R, Kitta M, Schutte J, Kuhnle A and Onishi H 2009 J. Phys. Chem. C 113 13199
[4] O'Regan B and Grätzel M 1991 Nature 353 737
[5] Bach U, Lupo D, Comte P, Moser J E, Weissörtel F, Salbeck J, Spreitzer H and Grätzel M 1998 Nature 395 583
[6] Wang Q, Li G J, Li D G, Lu X and H J C 2009 Chin. Phys. B 18 1843
[7] Wang G H, Pan H, Ke F J, Xia M F and Bai Y L 2008 Chin. Phys. B 17 0259
[8] Zhang F C, Zhang Z Y, Zhang W H, Yan J F and Yong J N 2009 Chin. Phys. B 18 2508
[9] Diebold U 2003 Surf. Sci. Rep. 48 53
[10] Chamberlin S E, Hirschmugl C J, Poon H C and Saldin D K 2009 Surf. Sci. 603 3367
[11] Bennett R A, Stone P, Price N J and Bowker M 1999 Phys. Rev. Lett. 82 3831
[12] Norenberg H and Harding J H 1999 Phys. Rev. B 59 9842
[13] Lindan P J D and Harrision N M 2001 Surf. Sci. 479 L375
[14] Muscenti T M, Gibbs G V and Cox D F 2005 Surf. Sci. 594 70
[15] Rignanese G M, Vita A D, Charlier J C, Gonze X and Car R 2000 Phys. Rev. B 61 13250
[16] Tang F L, Huang M, Lu W J and Yu W Y 2009 Surf. Sci. 603 948
[17] Tang F L and Zhang X 2007 Appl. Phys. Lett. 90 142501
[18] Tang F L and Zhang X 2006 Phys. Rev. B 73 144401
[19] Lewis G V and Catlow C R A 1985 J. Phys. C: Solid State Phys. 18 1149
[20] Olbrechts B, Zhang X X, Bertholet Y, Pardoen T and Raskin J P 2006 Microsyst. Technol. 12 383
[21] Wei D H, Yuan F T, Chang H W, You K L, Liou Y, Chin T S, Yu C C and Yao Y D 2006 Nanotechnology 18 335603
[22] Luo X, Demkov A A, Triyoso D, Fejes P, Gregory R and Zollner S 2008 Phys. Rev. B 78 245314
[23] Chen G H, Hou Z F and Gong X G 2008 Comput. Mater. Sci. 44 46
[24] Swamy V, Muscat J, Gale J D and Harrision N M 2002 Surf. Sci. 504 115
[25] Perron H, Domain C, Roques J, Drot R, Simoni E and Catalette H 2007 Theor. Chem. Acc. 117 565 endfootnotesize
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[7] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[8] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[9] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[10] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[11] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[12] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[13] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[14] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[15] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
No Suggested Reading articles found!