Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 127302    DOI: 10.1088/1674-1056/20/12/127302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A density functional theory study of the electronic structures and magnetic properties of Fe(1-x)Cox alloy nanowires encapsulated in (10,0) carbon nanotubes

Xie You(解忧)a)b) and Zhang Jian-Min(张建民)a)†
a College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China; b College of Science, Xi'an University of Science and Technology, Xi'an 710054, China
Abstract  Under the generalized gradient approximation, the electronic structures and magnetic properties of Fe(1-x)Cox alloy nanowires encapsulated inside zigzag (10,0) carbon nanotubes (CNTs) are investigated systematically using firstprinciple density functional theory calculations. For the fully relaxed Fe(1-x)Cox/CNT structures, all the C atoms relax outwards, and thus the diameters of the CNTs are slightly increased. Formation energy analysis shows that the combining processes of all Fe(1-x)Cox/CNT systems are exothermic, and therefore the Fe(1-x)Coxalloy nanowires can be encapsulated into semiconducting zigzag (10,0) CNTs and form stable hybrid structures. The charges are transferred from the Fe(1-x)Coxnanowires to the more electronegative CNTs, and the Fe-C/Co-C bonds formed have polar covalent bond characteristics. Both the spin polarization and total magnetic moment of the Fe(1-x)Cox/CNT system are smaller than those of the corresponding freestanding Fe(1-x)Coxnanowire, and the magnetic moment of the Fe(1-x)Cox/CNT system decreases monotonously with increasing Co concentration, but the Fe(1-x)Cox/CNT systems still have a large magnetic moment, implying that they can be utilized in high-density magnetic recording devices.
Keywords:  Fe-Co alloy      carbon nanotube      electronic structure      magnetic property  
Received:  06 July 2011      Revised:  11 August 2011      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  75.75.-c (Magnetic properties of nanostructures)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the State Key Development for Basic Research of China (Grant No. 2010CB631002) and the National Natural Science Foundation of China (Grant No. 51071098).

Cite this article: 

Xie You(解忧) and Zhang Jian-Min(张建民) A density functional theory study of the electronic structures and magnetic properties of Fe(1-x)Cox alloy nanowires encapsulated in (10,0) carbon nanotubes 2011 Chin. Phys. B 20 127302

[1] Sourmail T 2005 Prog. Mater. Sci. 50 816
[2] Sunder R S and Deevi S C 2005 Int. Mater. Rev. 50 157
[3] Qin D H, Cao L, Sun Q Y, Huang Y and Li H L 2002 Chem. Phys. Lett. 358 484
[4] Terrones H, L'opez-Ur'hias F, Mu noz-Sandoval E, Rodr'higuez-Manzo J A, Zamudio A, El'hias A L and Terrones M 2006 Solid State Sci. 8 303
[5] Kozhuharova R, Ritschel M, Elefant D, Graff A, Mönch I, Mühl T, Schneider C M and Leonhardt A 2005 J. Magn. Magn. Mater. 290-291 250
[6] Turgut Z, Scott J H, Huang M Q, Majetich S A and McHenry M E 1998 J. Appl. Phys. 83 6468
[7] El'hias A L, Rodr'higuez-Manzo J A, McCartney M R, Golberg D, Zamudio A, Baltazar S E, L'opez-Ur'hias F, Mu noz-Sandoval E, Gu L, Tang C C, Smith D J, Bando Y, Terrones H and Terrones M 2005 Nano Lett. 5 467
[8] Yang C, Zhao J and Lu J P 2003 Phys. Rev. Lett. 90 257203
[9] Cao J X, Yan X H, Xiao Y and Ding J W 2003 Chin. Phys. 12 1440
[10] Fan B B, Wang L N, Wen H J, Guan L, Wang H L and Zhang R 2011 Acta Phys. Sin. 60 012101 (in Chinese)
[11] Kang Y J, Choi J, Moon C Y and Chang K J 2005 Phys. Rev. B 71 115441
[12] Peng G W, Huan A C H and Feng Y P 2006 Appl. Phys. Lett. 88 193117
[13] Li S L and Zhang J M 2011 Acta Phys. Sin. 60 078801 (in Chinese)
[14] Ivanovskaya V V, Köhler C and Seifert G 2007 Phys. Rev. B 75 075410
[15] Zhang Y, Cao J X and Yang W 2008 Chin. Phys. B 17 1881
[16] Yuan S and Li F 2009 J. Appl. Phys. 106 014307
[17] Du X J, Zhang J M, Wang S F, Xu K W and Ji V 2009 Eur. Phys. J. B 72 119
[18] Zhang J M, Du X J, Wang S F and Xu K W 2009 Chin. Phys. B 18 5468
[19] Ni M Y, Wang X L and Zeng Z 2009 Chin. Phys. B 18 357
[20] Liu H X, Zhang H M, Hu H Y and Song J X 2009 Chin. Phys. B 18 734
[21] Zhang L J, Hu H F, Wang Z Y, Wei Y and Jia J F 2010 Acta Phys. Sin. 59 527 (in Chinese)
[22] Wang L G, Zhang H Y, Wang C and Terence K S W 2010 Acta Phys. Sin. 59 536 (in Chinese)
[23] Yang P F, Wu F M, Teng B T, Liu S and Jiang J Z 2010 Chin. Phys. B 19 097104
[24] Chen L N, Ma S S, OuYang F P, Xiao J and Xu H 2011 Chin. Phys. B 20 017103
[25] Xie Y, Zhang J M and Huo Y P 2011 Eur. Phys. J. B 81 459
[26] Jo C 2009 J. Phys. D: Appl. Phys. 42 105008
[27] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[28] Kresse G and Furthmüller 1996 Phys. Rev. B 54 11169
[29] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[30] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[31] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[32] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[33] Drautz R, D'hiaz-Ortiz A, Fähnle M and Dosch H 2004 Phys. Rev. Lett. 93 067202
[34] Jo C, Lee J I and Jang Y 2005 Chem. Mater. 17 2667
[35] Fodor P S, Tsoi G M and Wenger L E 2002 J. Appl. Phys. 91 8186
[36] Kota Y, Takahashi T, Tsuchiura H and Sakuma A 2009 J. Appl. Phys. 105 07B716
[37] Yildiz F, Przybylski M and Kirschner J 2009 J. Appl. Phys. 105 07E129
[38] Chermahini M D, Zandrahimi M, Shokrollahi H and Sharafi S 2009 J. Alloy Compd. 477 45
[39] Chermahini M D, Sharafi S, Shokrollahi H, Zandrahimi M and Shafyei A 2009 J. Alloy Compd. 484 54
[40] Chermahini M D, Sharafi S, Shokrollahi H and Zandrahimi M 2009 J. Alloy Compd. 474 18
[41] Bader R 1990 Atoms in Molecules: A Quantum Theory (New York: Oxford University Press)
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[4] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[7] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[8] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[9] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[12] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[13] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[14] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[15] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
No Suggested Reading articles found!