Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 118202    DOI: 10.1088/1674-1056/20/11/118202
RAPID COMMUNICATION Prev   Next  

Significant effect of electron transfer between current collector and active material on high rate performance of Li4Ti5O12

Pan Hui-Lin (潘慧霖), Hu Yong-Sheng (胡勇胜), Li Hong (李泓), Chen Li-Quan (陈立泉)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The rate and cycling performances of the electrode materials are affected by many factors in a practical complicated electrode process. Learning about the limiting step in a practical electrochemical reaction is very important to effectively improve the electrochemical performances of the electrode materials. Li4Ti5O12, as a zero-strain material, has been considered as a promising anode material for long life Li-ion batteries. In this study, our results show that the Li4Ti5O12 pasted on Cu or graphite felt current collector exhibits unexpectedly higher rate performance than on Al current collector. For Li4Ti5O12, the electron transfer between current collector and active material is the critical factor that affects its rate and cycling performances.
Keywords:  Li4Ti5O12      current collector      electron transfer      Li-ion batteries  
Received:  25 September 2011      Revised:  08 October 2011      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  73.40.-c (Electronic transport in interface structures)  
  77.84.Cg (PZT ceramics and other titanates)  

Cite this article: 

Pan Hui-Lin (潘慧霖), Hu Yong-Sheng (胡勇胜), Li Hong (李泓), Chen Li-Quan (陈立泉) Significant effect of electron transfer between current collector and active material on high rate performance of Li4Ti5O12 2011 Chin. Phys. B 20 118202

[1] Armand M and Tarascon J M 2008 Nature 451 652
[2] Jung H G, Myung S T, Yoon C S, Son S B, Oh K H, Amine K, Scrosati B and Sun Y K 2011 Energy Environ. Sci. 4 1345
[3] Ferg E, Gummow R J, Dekock A and Thackeray M M 1994 J. Electrochem. Soc. 141 L147
[4] Ohzuku T, Ueda A and Yamamoto N 1995 J. Electrochem. Soc. 142 1431
[5] Taberna P L, Mitra S, Poizot P, Simon P and Tarascon J M 2006 Nature Materials 5 567
[6] Wu H C, Lee E and Wu N L 2010 Electrochem. Commun. 12 488
[7] Cheng L, Liu H J, Zhang J J, Xiong H M and Xia Y Y 2006 J. Electrochem. Soc. 153 A1472
[8] Yang Z G, Zhang J L, Meyer M W K, Lu X C, Choi D, Lemmon J P and Liu J 2011 Chem. Rev. 111 3577
[9] Zhu G N, Liu H J, Zhuang J H, Wang C X, Wang Y G and Xia Y Y 2011 Energy Environ. Sci. DOI: 10.1039/C1EE01680F
[10] Ding Z J, Zhao L, Suo L M, Jiao Y, Meng S, Hu Y S, Wang Z X and Chen L Q 2011 Phys. Chem. Chem. Phys. 13 15127
[11] Ravet N, Chouinard Y, Magnan J F, Besner S, Gauthier M and Armand M 2001 J. Power Sources 97 503
[12] Zhao L, Hu Y S, Li H, Wang Z X and Chen L Q 2011 Adv. Mater. 23 1385
[13] Pan H L, Hu Y S, Li H and Chen L Q (Chinese Patent) Appl. No. 2011101790761.1, Date Filed: 30-June-2011
[14] Chen F and Gardner D 1998 IEEE Electron Device Lett. 19 508
[15] Nakamura R, Tokozakura D and Nakajima H 2007 J. Appl. Phys. 101 074303
[16] Jeurgens L P H, Sloof W G, Tichelaar F D and Mittemeijer E J 2002 J. Appl. Phys. 92 1649
[17] Schweikert N, Hahn H and Indris S 2011 Phys. Chem. Chem. Phys. 13 6234
[18] Krol R, Gossens A and Schoonman J 1999 J. Phys. Chem. B 103 715
[19] Ouyang C Y, Zhong Z Y and Lei M S 2007 Electrochem. Commun. 9 1107
[20] Zaghib K, Simoneau M, Armand M and Gauthier M 1999 J. Power Sources 81 300
[21] Zheng L, Joshi R P and Fazi C 1999 J. Appl. Phys. 85 3701
[22] Zech M, Bromberger H, Klier J, Leiderer P and Wyatt A F G 2011 Phys. Rev. B 78 115113
[1] In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM
Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟), and Xiao-Hui Zhao(赵晓辉). Chin. Phys. B, 2021, 30(6): 066801.
[2] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[3] Electron transfer properties of double quantum dot system in a fluctuating environment
Lujing Jiang(姜露静), Kang Lan(蓝康), Zhenyu Lin(林振宇), and Yanhui Zhang(张延惠). Chin. Phys. B, 2021, 30(4): 040307.
[4] Understanding the Li diffusion mechanism and positive effect of current collector volume expansion in anode free batteries
Yan Zhuang(庄严), Zheyi Zou(邹喆乂), Bo Lu(吕浡), Yajie Li(李亚捷), Da Wang(王达), Maxim Avdeev, Siqi Shi(施思齐). Chin. Phys. B, 2020, 29(6): 068202.
[5] Carbon-nanodot-coverage-dependent photocatalytic performance of carbon nanodot/TiO2 nanocomposites under visible light
Ming-Ye Sun(孙明烨), You-Jin Zheng(郑友进), Lei Zhang(张蕾), Li-Ping Zhao(赵立萍), Bing Zhang(张冰). Chin. Phys. B, 2017, 26(5): 058101.
[6] Li-ion batteries: Phase transition
Peiyu Hou(侯配玉), Geng Chu(褚赓), Jian Gao(高健), Yantao Zhang(张彦涛), Lianqi Zhang(张联齐). Chin. Phys. B, 2016, 25(1): 016104.
[7] Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries
Musheng Wu(吴木生), Bo Xu(徐波), Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2016, 25(1): 018206.
[8] Surface structure evolution of cathode materials for Li-ion batteries
Yingchun Lyu(吕迎春), Yali Liu(刘亚利), Lin Gu(谷林). Chin. Phys. B, 2016, 25(1): 018209.
[9] A superhigh discharge capacity induced by a synergetic effect between high-surface-area carbons and a carbon paper current collector in a lithium–oxygen battery
Luo Guang-Sheng (罗广生), Huang Shi-Ting (黄诗婷), Zhao Ning (赵宁), Cui Zhong-Hui (崔忠慧), Guo Xiang-Xin (郭向欣). Chin. Phys. B, 2015, 24(8): 088102.
[10] Redox-mediated reversible modulation of the photoluminescence of single quantum dots
Li Ying (李颖), Liu Ren-Wei (刘仁威), Ma Li (马丽), Fan Su-Na (范苏娜), Li Hui (李辉), Hu Shu-Xin (胡书新), Li Ming (李明). Chin. Phys. B, 2015, 24(7): 078202.
[11] Photo-induced intramolecular electron transfer and intramolecular vibrational relaxation of rhodamine 6G in DMSO revealed by multiplex transient grating spectroscopy
Jiang Li-Lin (蒋礼林), Liu Wei-Long (刘伟龙), Song Yun-Fei (宋云飞), Sun Shan-Lin (孙山林). Chin. Phys. B, 2014, 23(10): 107802.
[12] Erratum to “Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery”
Zhao Liang(赵亮), Pan Hui-Lin(潘慧霖), Hu Yong-Sheng(胡勇胜), Li Hong(李泓), and Chen Li-Quan(陈立泉) . Chin. Phys. B, 2012, 21(7): 079901.
[13] Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery
Zhao Liang (赵亮),Pan Hui-Lin (潘慧霖),Hu Yong-Sheng (胡勇胜),Li Hong (李泓),Chen Li-Quan (陈立泉). Chin. Phys. B, 2012, 21(2): 028201.
[14] Investigation of the transfer ionization process in collisions of partially stripped ions on He
Liu Hui-Ping(刘会平), Chen Xi-Meng(陈熙萌), Ouyang Xiao-Ping(欧阳晓平), Xi Fa-Yuan(席发元), and Su Guang-Hui(苏光辉). Chin. Phys. B, 2010, 19(6): 063404.
[15] Ab initio studies on n-type and p-type Li4Ti5O12
Zhong Zhi-Yong(钟志勇), Nie Zheng-Xin(聂正新), Du Yan-Lan(杜燕兰), Ouyang Chu-Ying(欧阳楚英), Shi Si-Qi(施思齐), and Lei Min-Sheng(雷敏生). Chin. Phys. B, 2009, 18(6): 2492-2497.
No Suggested Reading articles found!