Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 114702    DOI: 10.1088/1674-1056/20/11/114702
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Entropy and weak solutions in the lattice Bhatnagar–Gross–Krook model

Ran Zheng(冉政) and Xu Yu-Peng(许宇鹏)
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
Abstract  We derive the entropy functions whose local equilibria are suitable to recover the Euler-like equations in the framework of the lattice Boltzmann method. Numerical examples are also given, which are consistent with the above theoretical arguments. In all cases, we observe a negative entropy range existing near the shock, while numerical oscillations are captured.
Keywords:  lattice Boltzmann method      entropy      weak solution  
Received:  24 March 2011      Revised:  18 May 2011      Accepted manuscript online: 
PACS:  47.11.Qr (Lattice gas)  
  47.10.ad (Navier-Stokes equations)  
  51.10.+y (Kinetic and transport theory of gases)  
  51.30.+i (Thermodynamic properties, equations of state)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 90816013 and 10572083).

Cite this article: 

Ran Zheng(冉政) and Xu Yu-Peng(许宇鹏) Entropy and weak solutions in the lattice Bhatnagar–Gross–Krook model 2011 Chin. Phys. B 20 114702

[1] Koelman J 1991 Europhys. Lett. 15 603
[2] Chen S and Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329
[3] Qian Y H, d'Humieres D and Lallemand P 1992 Europhys. Lett. 17 479
[4] Benzi R, Succi S and Vergassola M 1992 Phys. Rep. 222 R5339
[5] Succi S, Karlin I V and Chen H 2002 Rev. Modern Phys. 74 1203
[6] Ansumali S and Karlin I V 2002 J. Stat. Phys. 107 291
[7] Renda A, Bella G, Succi S and Karlin I V 1998 Europhys. Lett. 41 279
[8] Deng M Y, Tang G N, Kong L J and Liu M R 2011 Chin. Phys. B 20 020510
[9] Ran Z 2007 Chin. Phys. Lett. 24 3332
[10] Ran Z 2008 Chin. Phys. Lett. 25 3867
[11] Ran Z 2009 Chin. Phys. B 18 2159
[12] Ran Z and Xu Y P 2009 Int. J. Modern Phys. C 20 1493
[13] Bhatnagar P L, Gross E P and Krook M 1954 Phys. Rev. 94 511
[14] Xu K and Luo L S 1998 Int. J. Modern Phys. C 9 1177
[15] Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford: Oxford University Press)
[1] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[2] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[3] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[4] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[5] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[6] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[7] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[8] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[9] Thermodynamic effects of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle
Zhenxiong Nie(聂振雄), Yun Liu(刘芸), Juhua Chen(陈菊华), and Yongjiu Wang(王永久). Chin. Phys. B, 2022, 31(5): 050401.
[10] A quantitative analysis method for contact force of mechanism with a clearance joint based on entropy weight and its application in a six-bar mechanism
Zhen-Nan Chen(陈镇男), Meng-Bo Qian(钱孟波), Fu-Xing Sun(孙福兴), and Jia-Xuan Pan(潘佳煊). Chin. Phys. B, 2022, 31(4): 044501.
[11] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[12] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[13] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[14] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[15] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
No Suggested Reading articles found!