Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 017502    DOI: 10.1088/1674-1056/20/1/017502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Analyses of crystal field and exchange interaction of Dy3Ga5O12 under extreme conditions

Wang Wei(王维), Qi Xin(祁欣), and Yue Yuan(岳元)
Department of Physics and Electronics, School of Science, Beijing University of Chemical Technology, Beijing 100029, China
Abstract  This paper theoretically investigates the effects of crystal field and exchange interaction field on magnetic properties in dysprosium gallium garnet under extreme conditions (low temperatures and high magnetic fields) based on quantum theory. Here, five sets of crystal field parameters are discussed and compared. It demonstrates that, only considering the crystal field effect, the experiments can not be successfully explained. Thus, referring to the molecular field theory, an effective exchange field associated with the Dy–Dy exchange interaction is further taken into account. Under special consideration of crystal field and the exchange interaction field, it obtains an excellent agreement between the theoretical results and experiments, and further confirms that the exchange interaction field between rare-earth ions has great importance to magnetic properties in paramagnetic rare-earth gallium garnets.
Keywords:  crystal field      exchange interaction      magnetic anisotropy      rare-earth garnet  
Received:  08 June 2010      Revised:  05 August 2010      Accepted manuscript online: 
PACS:  75.10.Dg (Crystal-field theory and spin Hamiltonians)  
  75.30.Et (Exchange and superexchange interactions)  
  75.30.Gw (Magnetic anisotropy)  
  73.50.Fq (High-field and nonlinear effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004005 and 60971019), the Young Scholars Fund of Beijing University of Chemical Technology, China (Grant No. QN0724).

Cite this article: 

Wang Wei(王维), Qi Xin(祁欣), and Yue Yuan(岳元) Analyses of crystal field and exchange interaction of Dy3Ga5O12 under extreme conditions 2011 Chin. Phys. B 20 017502

[1] Nistor I, Holthaus C, Tkachuk S, Mayergoyz D I and Krafft C 2007 J. Appl. Phys. 101 09C526
[2] Wang W, Yue Y and Li D Y 2009 J. Appl. Phys. 105 083909
[3] Tsidaeva N and Abaeva V 2006 J. Alloys Compd. 418 145
[4] Foldyna M, Postava K, Ciprian D and Pivstora J 2007 J. Alloys Compd. 434 581
[5] Helseth L E, Solovyev A G, Hansen R W, Il'yashenko E I, Baziljevich M and Johansen T H 2002 Phys. Rev. B 66 064405
[6] van Vleck J H and Hebb M H 1934 Phys. Rev. 46 17
[7] Norvell J C, Wolf W P, Corliss L M, Hastings J M and Nathans R 1969 Phys. Rev. 186 557
[8] Hastings J M, Corliss L M and Kunnmann W 1985 Phys. Rev. B 31 2902
[9] Wang W, Qi X and Liu G Q 2008 J. Appl. Phys. 103 073908
[10] Filippi J, Tcheou F and Rossat M J 1980 Solid State Commu. 33 827
[11] Wang W and Yue Y 2009 J. Alloys Compd. 488 23
[12] Veyssie M and Dreyfus B 1967 J. Phys. Chem. Solids 28 499
[13] Gr"unberg P, H"ufner S, Orltch E and Schmitt J 1969 Phys. Rev. 184 285
[14] Wadsack R L, Lewis J L, Argyle B E and Chang R K 1971 Phys. Rev. B 3 4342
[15] Antic-Fidancev E, Jayasankar C K, Lemaitre-Blaise M and Porcher P 1986 J. Phys. C 19 6451
[16] Nielson C W and Kroster G F 1963 Spectroscopic Cofficients for p^n, d^n, and f^n Configurations (Cambridge: MIT Press)
[17] Rotenberg M, Bivins R, Metropolis N and Wooten J K 1963 3j and 6j Symbols (Cambridge: MIT Press)
[18] Fillipi J, Lasjaunias J C, Ravex A, Tch'eou F and Rossat M J 1977 Solid State Commu. 23 613
[19] Liu G Q, Zhang W K and Zhang X 1993 Phys. Rev. B 48 1609
[20] Liu G Q, Zhang X, Zhang N G and Yuan B 1994 J. Phys.: Condens. Matter 6 453
[21] Capel H W, Bidaux R, Carrara P and Vivet B 1966 Phys. Lett. 22 400 endfootnotesize
[1] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[2] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[3] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[4] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[5] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[6] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[7] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[8] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[9] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[10] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[11] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[12] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[13] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[14] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[15] Magnetic phase diagram of single-layer CrBr3
Wei Jiang(江伟), Yue-Fei Hou(侯跃飞), Shujing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(12): 127501.
No Suggested Reading articles found!