Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 017501    DOI: 10.1088/1674-1056/20/1/017501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Multilayer transition in a spin-1 Blume–Capel model with RKKY interaction and quantum transverse anisotropy

N. Tahiri, H. Ez-Zahraouy, and A. Benyoussef
Computational Physics Group, LMPHE, Departement de Physique, Faculte des Sciences, Universite Mohammed V-Agdal, B.P. 1014, Rabat, Morocco
Abstract  Using mean-field theory, we have studied the effect of quantum transverse anisotropies with RKKY interaction on the multi-layer transition and magnetic properties of the spin-1 Blume–Capel model of a system formed by two magnetic multi-layer materials, of different thicknesses, separated by a non-magnetic spacer of thickness M. It is found that the multilayer magnetic order--disorder transition temperature depends strongly on the value of the transverse anisotropy. The multilayer transition temperature decreases when increasing the transverse anisotropy. Furthermore, there exists a critical quantum transverse anisotropy ΔxL beyond which the separate transitions occur in the two magnetic layers. The critical transverse anisotropy ΔxL decreases (increases) on increasing the non-magnetic spacer of thickness M (on increasing the crystal field), and ΔxL undergoes oscillations as a function of the Fermi level.
Keywords:  quantum transverse anisotropy      order–disorder      layering transitions      RKKY interaction  
Received:  07 May 2010      Revised:  20 July 2010      Accepted manuscript online: 
PACS:  75.10.-b (General theory and models of magnetic ordering)  
  75.10.Dg (Crystal-field theory and spin Hamiltonians)  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  75.30.Gw (Magnetic anisotropy)  

Cite this article: 

N. Tahiri, H. Ez-Zahraouy, and A. Benyoussef Multilayer transition in a spin-1 Blume–Capel model with RKKY interaction and quantum transverse anisotropy 2011 Chin. Phys. B 20 017501

[1] Kanno I, Hayashi S, Takayama R and Hirao T 1996 Appl. Phys. Lett. 68 382
[2] Erbil A, Kim Y and Gerhardt R A 1996 Phys. Rev. Lett. 77 1628
[3] Tabata H and Kawai T 1997 Appl. Phys. Lett. 70 20
[4] Qu B D, Evstigneev M, Johnson D J and Prince R H 1998 Appl. Phys. Lett. 72 1394
[5] Park Y 1999 Solid State Commun. 112 167
[6] Tan E K, Osman J and Tilley D R 2001 Solid State Commun. 117 59
[7] Wesselinowa J M 2002 Solid State Commun. 121 489
[8] Wesselinowa J M and Trimper S 2004 Phys. Rev. B 69 024105
[9] Teng B and Sy H K 2004 Phys. Rev. B 69 104115
[10] Kaneyoshi T 2001 Physica A 293 200
[11] Kaneyoshi T 2003 Physica A 319 355
[12] de Gennes P G 1963 Solid State Commun. 1 132
[13] Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Eitenne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472
[14] Parkin S S P, More N and Roche K P 1990 Phys. Rev. Lett. 64 2304
[15] Ruderman M A and Kittel C 1954 Phys. Rev. 96 99
[16] Kasuya T 1956 Progr. Theoret. Phys. 16 45
[17] Yosida K 1957 Phys. Rev. 106 893
[18] Hinchey L L and Mills D L 1986 Phys. Rev. B 33 3329
[19] Gr"unberg P, Schreiber R, Pang Y, Brodsky M B and Sowers H 1986 Phys. Rev. Lett. 57 2442
[20] Carbone C and Alvarado S F 1987 Phys. Rev. B 36 2433
[21] Saul D M, Wortis M and Stauffer D 1974 Phys. Rev. B 9 4964
[22] Binasch G, Gr"unberg P, Saurenbach F and Zinn W 1989 Phys. Rev. B 39 4828
[23] John Q Xiao, Samuel Jiang J and Chien C L 1992 Phys. Rev. Lett. 68 3749
[24] Leong Z Y, Tan S G, Jalil M B A, Bala Kumar S and Han G C 2006 J. Magn. Magn. Mater. 310 635
[25] Benyoussef A and Ez-Zahraouy H 1994 Physica A 206 196
[26] Benyoussef A, Ez-Zahraouy H, Mahboub H and Ouazzani M J 2003 Physica A 326 220
[27] Bahmad L, Benyoussef A and Ez-Zahraouy H 2002 J. Magn. Magn. Mater. 238 115
[28] Yang X, Kuang X Y and Lu C 2006 Solid State Commun. 139 397
[29] Cherkaoui Eddeqaqi N, Saber M, El-Atri A and Kerouad M 1999 Physica A 272 144
[30] Ez-Zahraouy H 1995 Phys. Scripta 51 310
[31] Benyoussef A, Boccara N and Saber M 1986 J. Phys. C 19 1983
[32] Kaufman M and Kanner M 1990 Phys. Rev. B 42 2378
[33] Onyszkiewicz Z, Sweykowski P, Georgiev G I and Sandalski M P 1981 Acta Phys. Polon. A 59 379
[34] Benayad N, Benyoussef A and Boccara N 1985 J. Phys. C 18 1899
[35] Kaneyoshi T 1986 Phys. Rev. B 34 7866
[36] Kaneyoshi T 1987 J. Phys. Soc. Jpn. 56 933
[37] Chakraborty K G and Tucker J W 1986 Physica A 137 111
[38] Saxena V K 1978 Phys. Stat. Sol. (B) 88 K87
[39] Dickinson H and Yeomans J 1983 J. Phys. C 16 L345
[40] Tahiri N, Ez-Zahraouy H and Benyoussef A 2009 Physica A 388 3426
[41] Amigo R, del Barco E, Casas L I, Molins E, Tejada J, Rutel I B, Mommouton B, Dalal N and Brooks J 2002 Phys. Rev. B 65 172403
[42] Heu M, Yoon S W, Jeon W S, Jung D Y, Suh B J, Yoon S 2004 J. Magn. Magn. Mater. 272 E745
[43] Falk H 1970 Am. J. Phys. 38 858 endfootnotesize
[1] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
No Suggested Reading articles found!