Synchronization of spatiotemporal chaos in a class of complex dynamical networks
Zhang Qing-Ling(张庆灵)a) and Lü Ling(吕翎)a)b)†
a Institute of System Science, Northeastern University, Shenyang 110004, China; b College of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China
Abstract This paper studies the synchronization of complex dynamical networks constructed by spatiotemporal chaotic systems with unknown parameters. The state variables in the systems with uncertain parameters are used to construct the parameter recognizers, and the unknown parameters are identified. Uncertain spatiotemporal chaotic systems are taken as the nodes of complex dynamical networks, connection among the nodes of all the spatiotemporal chaotic systems is of nonlinear coupling. The structure of the coupling functions between the connected nodes and the control gain are obtained based on Lyapunov stability theory. It is seen that stable chaos synchronization exists in the whole network when the control gain is in a certain range. The Gray–Scott models which have spatiotemporal chaotic behaviour are taken as examples for simulation and the results show that the method is very effective.
Characteristics of vapor based on complex networks in China Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.