Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 094301    DOI: 10.1088/1674-1056/19/9/094301
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Localisation and phase transition of acoustic waves in a soft medium containing air bubbles

Liang Bin(梁彬), Zou Xin-Ye(邹欣晔), and Cheng Jian-Chun(程建春)
Laboratory of Modern Acoustics, Ministry of Education, and Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  We study via numerical experiments the localisation property of an acoustic wave in a viscoelastic soft medium containing randomly-distributed air bubbles. The behaviours of the oscillation phases of bubbles are particularly investigated in various cases for distinguishing efficiently the acoustic localisation from the effects of acoustic absorption caused by the viscosity of medium. The numerical results reveal the phenomenon of 'phase transition' characterized by an unusual collective oscillation of bubbles, which is an effective criterion to unambiguously identify the acoustic localisation in the presence of viscosity. Within the localisation region, the phenomenon of phase transition persists, and a remarkable decrease in the fluctuation of the oscillation phases of bubbles is observed. The localisation phenomenon will be impaired by the enhancement of the viscosity factors, and the extent to which the acoustic wave is localised may be determined by appropriately analyzing the values of the oscillation phases or the amount of reduction of the phase fluctuation. The results are particularly significant for the practical experiments in an attempt to observe the acoustic localisation in such a medium, which is in general subjected to the interference of the great ambiguity resulting from the effect of acoustic absorption.
Keywords:  acoustic      localisation      phase transition      viscoelastic soft medium      air bubble  
Received:  29 June 2009      Revised:  29 March 2010      Accepted manuscript online: 
PACS:  4335  
  0340K  
  4660B  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10804050 and 10874086), the Ministry of Education of China (Grant Nos. 20060284035 and 705017).

Cite this article: 

Liang Bin(梁彬), Zou Xin-Ye(邹欣晔), and Cheng Jian-Chun(程建春) Localisation and phase transition of acoustic waves in a soft medium containing air bubbles 2010 Chin. Phys. B 19 094301

[1] Anderson P W 1958 Phys. Rev. 109 1492
[2] Dalichaouch R, Armstrong J P, Schultz S, Platzman P M and McCall S L 1991 Nature 354 53
[3] Genack A Z and Garcia N 1991 Phys. Rev. Lett. 66 2064
[4] Wiersma D S, Bartolini P, Lagendijk A and Roghini R 1997 Nature 390 671
[5] Miguel A P and Paolo DT 2004 Phys. Rev. E 69 066606
[6] Ye Z and Alvarez A 1998 Phys. Rev. Lett. 80 3503
[7] Kuo C H, Wang K K and Ye Z 2003 Appl. Phys. Lett. 83 4247
[8] Wilson P S, Roy R A and Carey W M 2005 J. Acoust. Soc. Am. 117 1895
[9] Ostrovsky L A 1988 Sov. Phys. Acoust. 34 523
[10] Ostrovsky L A 1991 J. Acoust. Soc. Am. 90 3332
[11] Leroy V, Strybulevych A, Page J H and Scanlon M G 2008 J. Acoust. Soc. Am. 123 1931
[12] Liang B and Cheng J C 2007 Phys. Rev. E 75 016605
[13] Liang B, Zhu Z M and Cheng J C 2006 Chin. Phys. Lett. 23 871
[14] Liang B, Zou X Y and Cheng J C 2009 Chin. Phys. Lett. 26 024301
[15] Zabolotskaya E A, Ilinskii Y A, Meegan G D and Hamilton M F 2005 J. Acoust. Soc. Am. 118 2173
[16] Alvarez A, Wang C C and Ye Z 1999 J. Comp. Phys. 154 231
[17] Foldy L L 1945 Phys. Rev. 67 107
[18] Ishimaru A 1978 Wave Propagation and Scattering in Random Media (New York: Academic Press)
[19] Qian Z W and Xiao L 2008 Chin. Phys. B 17 3785
[20] Liang B, Zhu Z M and Cheng J C 2006 Chin. Phys. 15 412
[21] Church C C 1995 J. Acoust. Soc. Am. 97 1510
[22] Gaunaurd G C and Barlow J 1984 J. Acoust. Soc. Am. 75 23
[23] Feng H J and Liu F M 2009 Chin. Phys. B 18 1574
[24] Gupta B C and Ye Z 2003 Phys. Rev. E 67 036606 endfootnotesize
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[3] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[4] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[5] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[6] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[7] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[8] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[9] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[10] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[11] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[12] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[13] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[14] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[15] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
No Suggested Reading articles found!