Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 093301    DOI: 10.1088/1674-1056/19/9/093301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Active manipulation of the selective alignment by two laser pulses

Yang Zeng-Qiang(杨增强), Guo Zhi-Rong(郭志荣), and Ge Gui-Xian(葛桂贤)
Key Laboratory of Ecophysics and Department of Physics, Normal College, Shihezi University, Shihezi 832003, China
Abstract  This paper solves numerically the full time-dependent Schrõdinger equation based on the rigid rotor model, and proposes a novel strategy to determine the optimal time delay of the two laser pulses to manipulate the molecular selective alignment. The results illustrate that the molecular alignment generated by the first pulse can be suppressed or enhanced selectively, the relative populations of even and odd rotational states in the final rotational wave packet can be manipulated selectively by precisely inserting the peak of the second laser pulse at the time when the slope for the alignment parameter by the first laser locates a local maximum for the even rotational states and a local minimum for the odds, and vice versa. The selective alignment can be further optimised by selecting the intensity ratio of the two laser pulses on the condition that the total laser intensity and pulse duration are kept constant.
Keywords:  rotational wave packets      femtosecond laser pulses      time delay  
Received:  26 November 2009      Revised:  08 February 2010      Accepted manuscript online: 
PACS:  3300  
  3370  
  3380P  
Fund: Project supported by the initial research fund for High Level Talents of Shihezi University, China (Grant No. RCZX200743).

Cite this article: 

Yang Zeng-Qiang(杨增强), Guo Zhi-Rong(郭志荣), and Ge Gui-Xian(葛桂贤) Active manipulation of the selective alignment by two laser pulses 2010 Chin. Phys. B 19 093301

[1] Stapelfeldt H and Seideman T 2003 Rev. Mod. Phys. 75 543
[2] Seideman T and Hamilton E 2006 Adv. At. Mol. Opt. Phys. 52 289
[3] Sakai H, Minemoto S, Nanjo H, Tanji H and Suzuki T 2003 Phys. Rev. Lett. 90 083001
[4] Minemoto S, Nanjo H, Tanji H, Suzuki T and Sakai H 2003 J. Chem. Phys. 118 4052
[5] Rakitzis T P, van den Brom A J and Janssen M H M 2004 Science 203 1582
[6] Ohmura H, Saito N and Tachiya M 2006 Phys. Rev. Lett. 92 173001
[7] Yue D G, Zheng X Y, Liu H, Wang C X and Meng Q T 2009 Chin. Phys. B 18 1479
[8] Shapiro E A, Spanner M and Ivanov M Y 2003 Phys. Rev. Lett. 92 237901
[9] Seideman T 1997 Phys. Rev. A 56 R17
[10] Dey B K, Shapiro M and Brumer P 2000 Phys. Rev. Lett. 85 3125
[11] Lein M 2007 J. Phys. B 40 R315
[12] McClelland J J, Scjolten R E, Palm E C and Celotta R J 1991 Science 262 5197
[13] Tenner M G, Kuipers E W, Kleyn A W and Stolte S 2007 J. Chem. Phys. 94 R315
[14] Lan P, Lu P, Cao W, Li Y and Wang X 2007 Phys. Rev. A 76 021801(R)
[15] Gu B, Cui L, Zeng X H and Zhang F S 2006 Acta Phys. Sin. 55 2972 (in Chinese)
[16] Larsen J J, Hald K, Bjerre N, Stapelfeldt H and Seideman T 2000 Phys. Rev. Lett. 85 2450
[17] Dooley P W, Litvinyuk I V, Lee K F, Rayner D M, Spanner M, Villeneuve D M and Corkum P B 2003 Phys. Rev. A 68 023406
[18] Renard M, Hertz E, Guerin S, Jauslin H R, Lavorel B and Faucher O 2005 Phys. Rev. A bf 75 025401
[19] Yang Z Q and Zhou X X 2008 Acta Phys. Sin. 57 4099 (in Chinese)
[20] Pinkham D and Jones R R 2005 Phys. Rev. A 72 023418
[21] Pinkham D, Mooney K E and Jones R R 2007 Phys. Rev. A 75 013422
[22] Yang Z Q and Zhou X X 2006 Acta Phys. Chim. Sin. 22 932 (in Chinese)
[23] Sakai H, Safvan C P, Larsen J J, Hilligse K M, Hald K and Stapelfeldt H 1999 J. Phys. Chem. 110 10235
[24] Ben Haj-Yedder A, Auger A, Dion C M, Cances E, Keller A, Bris C L and Atabek O 2002 Phys. Rev. A 66 063401
[25] Leibscher M, Averbukh I S and Rabitz H 2003 Phys. Rev. Lett. 90 213001
[26] Lee K F, Litvinyuk I V, Dooley P W, Spanner M, Villeneuve D M and Corkum P B 2004 J. Phys. B 37 L43
[27] Xu N, Wu C, Huang J, Wu Z, Liang Q, Yang H and Gong Q 2006 Opt. Express 14 4992
[28] Lee K F, Villeneuve D M, Corkum P B, Stolow A and Underwood J G 2006 Phys. Rev. Lett. 97 173001
[29] Fleischer S, Averbukh I S and Prior Y 2007 Phys. Rev. Lett. 99 093002
[30] Gao Y, Wu C Y, Xu N, Zeng G P, Jiang H B, Yang H and Gong Q H 2008 Phys. Rev. A 77 043404
[31] Tong X M and Chu S I 1997 Chem. Phys. 217 1191
[32] Zhang H, Han K L, Zhao Y, He G Z and Lou N Q 1997 Chem. Phys. Lett. 271 204
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[3] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[4] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[5] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[6] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[7] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[8] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[9] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
[10] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[11] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[12] Design of passive filters for time-delay neural networks with quantized output
Jing Han(韩静), Zhi Zhang(章枝), Xuefeng Zhang(张学锋), and Jianping Zhou(周建平). Chin. Phys. B, 2020, 29(11): 110201.
[13] Validity of extracting photoionization time delay from the first moment of streaking spectrogram
Chang-Li Wei(魏长立), Xi Zhao(赵曦). Chin. Phys. B, 2019, 28(1): 013201.
[14] Synchronization performance in time-delayed random networks induced by diversity in system parameter
Yu Qian(钱郁), Hongyan Gao(高红艳), Chenggui Yao(姚成贵), Xiaohua Cui(崔晓华), Jun Ma(马军). Chin. Phys. B, 2018, 27(10): 108902.
[15] Attosecond transient absorption spectroscopy: Comparative study based on three-level modeling
Zeng-Qiang Yang(杨增强), Di-Fa Ye(叶地发), Li-Bin Fu(傅立斌). Chin. Phys. B, 2018, 27(1): 013301.
No Suggested Reading articles found!