Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090313    DOI: 10.1088/1674-1056/19/9/090313
GENERAL Prev   Next  

Teleportation and thermal entanglement in two-qubit Heisenberg XYZ spin chain with the Dzyaloshinski–Moriya interaction and the inhomogeneous magnetic field

Gao Dan(高丹)a), Zhao Zhen-Shuang(赵振双)a), Zhu Ai-Dong(朱爱东)a), Wang Hong-Fu(王洪福)b), Shao Xiao-Qiang(邵晓强)b), and Zhang Shou(张寿)a)†
a Department of Physics, College of Science, Yanbian University, Yanji 133002, China; b Center for the Condensed-Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  This paper studies the average fidelity of teleportation and thermal entanglement for a two-qubit Heisenberg XYZ chain in the presence of both an inhomogeneous magnetic field and a Dzyaloshinski–Moriya interaction. It shows that for a fixed Dz, the increase of bz will broaden the critical temperature at the cost of decreasing the thermal entanglement. And it can modulate the inhomogeneous magnetic field and the Dzyaloshinski–Moriya interaction for the average fidelity of teleportation to be optimal.
Keywords:  teleportation      thermal entanglement      Heisenberg XYZ spin chain  
Received:  22 October 2009      Revised:  30 December 2010      Accepted manuscript online: 
PACS:  0365  
  7510H  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60667001).

Cite this article: 

Gao Dan(高丹), Zhao Zhen-Shuang(赵振双), Zhu Ai-Dong(朱爱东), Wang Hong-Fu(王洪福), Shao Xiao-Qiang(邵晓强), and Zhang Shou(张寿) Teleportation and thermal entanglement in two-qubit Heisenberg XYZ spin chain with the Dzyaloshinski–Moriya interaction and the inhomogeneous magnetic field 2010 Chin. Phys. B 19 090313

[1] Bennett C, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W 1993 Phys. Rev. Lett. 70 1895
[2] Cao Z L and Li D C 2008 Chin. Phys. B 17 55
[3] Bennett C and Wiesner S 1992 Phys. Rev. Lett. 69 2881
[4] He J, Ye L and Ni Z X 2008 Chin. Phys. B 17 1597
[5] Ekert A K 1991 Phys. Rev. Lett. 67 661
[6] Wen H, Han Z F, Guo G C and Hong P L 2009 Chin. Phys. B 18 46
[7] Wang H F and Zhang S 2009 Chin. Phys. B 18 2642
[8] Wang H F and Zhang S 2008 Chin. Phys. B 17 1165
[9] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[10] Lee J and Kim M S 2000 Phys. Rev. Lett. 84 4236
[11] Yeo Y 2003 Phys. Rev. A 68 022316
[12] Santos L F 2003 Phys. Rev. A 67 062306
[13] Guo J L, Nie J and Song H S 2008 Commun. Theor. Phys. 49 1435
[14] He Z H, Xiong Z H and Zhang Y L 2006 Phys. Lett. A 354 79
[15] Christandl M, Datta N, Ekert A and Andrew J L 2004 Phys. Rev. Lett. 92 187902
[16] Li S B and Xu J B 2005 Phys. Rev. A 72 022332
[17] Yeo Y, Liu T Q, Lu Y E and Yang Q Z 2005 J. Phys. A 38 3235
[18] Liu J, Zhang C F and Chen Z Y 2008 Phys. Rev. A 71 022308
[19] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
[20] Shan C J, Cheng W W, Liu T K, Huang Y X, Li H and Xia Y J 2008 Chin. Phys. B 17 794
[21] Zhang Q, Zhang X P, Zhi Q J and Ren Z Z 2009 Chin. Phys. B 18 3210
[22] Zhang T, Chen P X and Li C Z 2009 Chin. Phys. B 18 1346
[23] Yeo Y 2002 quant-ph/0205014
[24] Zhang G F 2007 Phys. Rev. A 75 034304
[25] Zhang Y, Liu D and Long G L 2007 Chin. Phys. 16 0324
[26] Nishiyama M, Inada Y and Zheng G Q 2007 Phys. Rev. Lett. 98 047002
[27] Huang L Y and Fang M F 2008 Chin. Phys. B 17 2339
[28] Hanson R, Kouwenhoven L, Petta J and Vandersypen M 2007 Rev. Mod. Phys. 79 1217
[29] Bodoky F and Blaauboer M 2007 Phys. Rev. A 76 052309
[30] Caves C M and Wodkiewicz K 2004 Phys. Rev. Lett. 93 040506
[31] Peres A 1996 Phys. Rev. Lett. 77 1413
[32] Hill S and Wootters W 1997 Phys. Rev. Lett. 78 5022
[33] Yu T and Eberely J H 2005 quant-ph/0503089
[34] Jozsa R 1994 J. Mod. Opt. 41 2315
[35] Bowdrey M, Oi D, Short A, Banaszek K and Jones J A 2002 Phys. Lett. A 294 258 endfootnotesize
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[3] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[4] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[5] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[6] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[7] Taking tomographic measurements for photonic qubits 88 ns before they are created
Zhibo Hou(侯志博), Qi Yin(殷琪), Chao Zhang(张超), Han-Sen Zhong(钟翰森), Guo-Yong Xiang(项国勇), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Geoff J. Pryde, and Anthony Laing. Chin. Phys. B, 2021, 30(4): 040304.
[8] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[9] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[10] Thermal entanglement in a spin-1/2 Ising–Heisenberg butterfly-shaped chain with impurities
Meng-Ru Ma(马梦如), Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), and Bin Zhou(周斌). Chin. Phys. B, 2020, 29(11): 110308.
[11] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[12] Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2018, 27(9): 090306.
[13] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[14] Thermal entanglement of the spin-1 Ising–Heisenberg diamond chain with biquadratic interaction
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2017, 26(7): 070302.
[15] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
No Suggested Reading articles found!