Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090312    DOI: 10.1088/1674-1056/19/9/090312
GENERAL Prev   Next  

Applying invariant eigen-operator method to deriving normal coordinates of general classical Hamiltonian

Fan Hong-Yi(范洪义), Chen Jun-Hua(陈俊华), and Yuan Hong-Chun (袁洪春)
Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  For classical Hamiltonian with general form we find a new convenient way to obtain its normal coordinates, namely, let H be quantised and then employ the invariant eigen-operator (IEO) method (Fan et al. 2004 Phys. Lett. A 321 75) to derive them. The general matrix equation, which relies on M and L, for obtaining the normal coordinates of H is derived.
Keywords:  invariant eigen-operator method method      normal coordinates  
Received:  02 January 2010      Revised:  07 March 2010      Accepted manuscript online: 
PACS:  0365  
  6320  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874174) and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20070358009).

Cite this article: 

Fan Hong-Yi(范洪义), Chen Jun-Hua(陈俊华), and Yuan Hong-Chun (袁洪春) Applying invariant eigen-operator method to deriving normal coordinates of general classical Hamiltonian 2010 Chin. Phys. B 19 090312

[1] Goldstein H, Poole J C P and Safko J L 2002 Classical Mechanics (Columbia University: Addison-Wesley)
[2] Fan H Y and Chao L 2004 Phys. Lett. A 321 75
[3] Fan H Y, Hu H P and Tang X B 2005 J. Phys. A: Math. Gen. 38 4391
[4] Schrodinger E 1928 Four Lectures on Wave Mechanics (London: Blackie & Son)
[5] Fan H Y 2005 From Quantum Mechanics to Quan-tum Optics|Development of the Mathematical Physics (Shanghai: Shanghai Jiao Tong University Press) p349 (in Chinese)
[6] Fan H Y and Tang X B 2008 Progress of Mathematical Physics in Quantum Mechanics in China (Shanghai: University of Science and Technology of China Press) p333 (in Chinese)
[1] Energy average formula of photon gas rederived by using the generalised Hermann–Feynman theorem
Fan Hong-Yi(范洪义) and Jiang Nian-Quan(姜年权). Chin. Phys. B, 2010, 19(9): 090301.
[2] Fusion and fission solitons for the (2+1)-dimensional generalized Breor–Kaup system
Qiang Ji-Ye(强继业), Ma Song-Hua(马松华), and Fang Jian-Ping(方建平). Chin. Phys. B, 2010, 19(9): 090305.
[3] Nonlinear two-mode squeezing obtained by analysing two-mode exponential quadrature operators in entangled state representation
Liu Tang-Kun(刘堂昆), Shan Chuan-Jia(单传家), Liu Ji-Bing(刘继兵), and Fan Hong-Yi(范洪义). Chin. Phys. B, 2010, 19(9): 090307.
[4] Continuum states of modified Morse potential
Wei Gao-Feng(卫高峰) and Chen Wen-Li(陈文利). Chin. Phys. B, 2010, 19(9): 090308.
[5] Exact solution of entanglement of the double Jaynes–Cummings model without rotating wave approximation
Ren Xue-Zao(任学藻), Jiang Dao-Lai(姜道来), Cong Hong-Lu(丛红璐), and Li Lei(黎雷). Chin. Phys. B, 2010, 19(9): 090309.
[6] Nondestructive and complete Bell-state analysis for atomic qubit systems
He Yong(何勇) and Jiang Nian-Quan(姜年权). Chin. Phys. B, 2010, 19(9): 090310.
[7] Implementation of positive-operator-value measurements for single spin qubit via Heisenberg model
Cheng Liu-Yong(程留永), Shao Xiao-Qiang(邵晓强), Zhang Shou(张寿), and Yeon Kyu-Hwang. Chin. Phys. B, 2010, 19(9): 090311.
[8] Teleportation and thermal entanglement in two-qubit Heisenberg XYZ spin chain with the Dzyaloshinski–Moriya interaction and the inhomogeneous magnetic field
Gao Dan(高丹), Zhao Zhen-Shuang(赵振双), Zhu Ai-Dong(朱爱东), Wang Hong-Fu(王洪福), Shao Xiao-Qiang(邵晓强), and Zhang Shou(张寿). Chin. Phys. B, 2010, 19(9): 090313.
[9] Approximate solutions of Schrödinger equation for Eckart potential with centrifugal term
F. Tacskin and G. Koccak. Chin. Phys. B, 2010, 19(9): 090314.
[10] Concurrence, tangle and fully entangled fraction
Li Ming(李明), Fei Shao-Ming(费少明), and Li-Jost Xianqing(李先清). Chin. Phys. B, 2010, 19(9): 090315.
[11] Quantum reflection as the reflection of subwaves
Yuan Wen(袁文), Yin Cheng(殷澄), Wang Xian-Ping(王贤平), and Cao Zhuang-Qi(曹庄琪). Chin. Phys. B, 2010, 19(9): 093402.
[12] Concurrence evolution of two qubits coupled with one-mode cavity separately
Liu Wei-Ci(刘伟慈), Wang Fa-Qiang(王发强), and Liang Rui-Sheng(梁瑞生). Chin. Phys. B, 2010, 19(9): 094204.
[13] Robust generation of qutrit entanglement via adiabatic passage of dark states
Yang Zhen-Biao(杨贞标), Wu Huai-Zhi(吴怀志), and Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2010, 19(9): 094205.
[14] Entanglement transfer via the Raman atom–cavity-field interaction
Liang Mai-Lin(梁麦林) and Yuan Bing(袁兵). Chin. Phys. B, 2010, 19(9): 094206.
[15] Generation of a four-particle entangled state via cross-Kerr nonlinearity
Zhao Li-Fang(赵丽芳), Lai Bo-Hui(赖柏辉), Mei Feng(梅锋), Yu Ya-Fei(於亚飞), Feng Xun-Li(冯勋立), and Zhang Zhi-Ming(张智明). Chin. Phys. B, 2010, 19(9): 094207.
No Suggested Reading articles found!