Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 076501    DOI: 10.1088/1674-1056/19/7/076501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Thermal transport property of Ge34 and d-Ge investigated by molecular dynamics and the Slack's equation

Wang Han-Fu(王汉夫), Chu Wei-Guo(禇卫国), Guo Yan-Jun(郭延军), and Jin Hao(金灏)*
National Center for Nanoscience and Technology of China, Beijing 100190, China
Abstract  In this study, we evaluate the values of lattice thermal conductivity $\kappa_{\rm L}$ of type II Ge clathrate (Ge34) and diamond phase Ge crystal (d-Ge) with the equilibrium molecular dynamics (EMD) method and the Slack's equation. The key parameters of the Slack's equation are derived from the thermodynamic properties obtained from the lattice dynamics (LD) calculations. The empirical Tersoff's potential is used in both EMD and LD simulations. The thermal conductivities of d-Ge calculated by both methods are in accordance with the experimental values. The predictions of the Slack's equation are consistent with the EMD results above 250 K for both Ge34 and d-Ge. In a temperature range of 200—1000 K, the $\kappa_{\rm L}$ value of d-Ge is about several times larger than that of Ge34.
Keywords:  clathrate      thermal conductivity      molecular dynamics simulation      the Slack's equation  
Revised:  25 December 2009      Accepted manuscript online: 
PACS:  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
  65.40.G- (Other thermodynamical quantities)  
  63.20.-e (Phonons in crystal lattices)  
Fund: Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-H20).

Cite this article: 

Wang Han-Fu(王汉夫), Chu Wei-Guo(禇卫国), Guo Yan-Jun(郭延军), and Jin Hao(金灏) Thermal transport property of Ge34 and d-Ge investigated by molecular dynamics and the Slack's equation 2010 Chin. Phys. B 19 076501

[1] San-Miguel A, Kéghélian P, Blase X, Mélinon P, Perez A, Itié J P, Polian A, Reny E, Cros C and Pouchard M 1999 Phys. Rev. Lett. 83 5290
[2] Nolas G S, Cohn J L, Slack G A and Schujman S B 1998 Appl. Phys. Lett. 73 178
[3] Kuznetsov V L, Kuznetsova L A, Kaliazin A E and Rowe D M 2000 J. Appl. Phys. 87 7871
[4] Martin J, Nolas G S, Wang H and Yang J 2007 J. Appl. Phys. 102 103719
[5] Kawaji H, Horie H, Yamanaka S and Ishikawa M 1995 Phys. Rev. Lett. 74 1427
[6] Yamanaka S, Enishi E, Fukuoka H and Yasukawa M 2000 Inorg. Chem. 39 56
[7] Slack G A In: Rowe D M (editor) 1995 CRC Handbook of Thermoelectrics (Boca Raton: CRC Press) p407
[8] Dong J, Sankey O F and Myles C W 2001 Phys. Rev. Lett. 86 2361
[9] Nolas G S, Beekman M, Gryko J, Lamberton Jr G A, Tritt T M and McMillan P F 2003 Appl. Phys. Lett. 82 910
[10] Li J, Porter L and Yip S 1998 J. Nuclear Mater. 255 139
[11] Volz S G and Chen G 2000 Phys. Rev. B 61 2651
[12] Che J, cCavghin T, Deng W and Goddard III W A 2000 J. Chem. Phys. 113 6888
[13] Schelling P K, Phillpot S R and Keblinski P 2002 Phys. Rev. B 65 144306
[14] Tretiakov K V and Scandolo S 2004 J. Chem. Phys. 120 3765
[15] Yoon Y G, Car R, Srolovitz D J and Scandolo S 2004 Phys. Rev. B 70 012302
[16] Sun L and Murthy J Y 2006 Appl. Phys. Lett. 89 171919
[17] Ponomareva I, Srivastava D and Menon M 2007 Nano Lett 7 1155
[18] Gu X K and Cao B Y 2007 Chin. Phys. 16 3777
[19] Wang H F and Chu W G 2009 J Alloy. Compd. 485 488
[20] Callaway J 1959 Phys. Rev. 113 1046
[21] Holland M G 1963 Phys. Rev. 132 2461
[22] Morelli D T and Slack G A In: Shinde S and Goela J (editors) 2005 High Thermal Conductivity Materials (New York: Springer-Verlag)
[23] Fang C M and de Wijs G A 2004 J. Phys.: Condens. Matter 16 3027
[24] Zhang X J, Zhang J M and Xu K W 2006 Chin. Phys. 15 2108
[25] Cao L X and Wang C Y 2006 Chin. Phys. 15 2092
[26] Nenghabi E N and Myles C W 2008 Phys. Rev. B 78 195202
[27] Tersoff J 1989 Phys. Rev. B 39 5566
[28] Gale J D 1997 J. Chem. Soc., Faraday Trans. 93 629
[29] Porter L J, Li J and Yip S 1997 J. Nuclear Mater. 246 53
[30] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
[31] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press)
[32] Li J 2005 J. Computer-Aided Mater. Design 12 141
[33] Wang H F, Chu W G, Jin H and Xiong Y F 2008 Chem. Phys. 344 299
[34] Wang C Z, Chan C T and Ho K M 1990 Phys. Rev. B 42 11276
[35] Dong J and Sankey O F 1999 J. Phys.: Condens. Matter 11 6129
[36] Moriguchi K, Munetoh S and Shintani A 2000 Phys. Rev. B 62 7138
[37] Giannozzi P, de Gironcoli S, Pavone P and Baroni S 1991 Phys. Rev. B 43 7231
[38] Porter L J, Yip S, Yamaguchi M, Kaburaki H and Tang M 1997 J. Appl. Phys. 81 96
[39] Porter L J, Justo J F and Yip S 1997 J. Appl. Phys. 82 5378
[40] Moriguchi K, Munetoh S and Shintani A 2001 Phys. Rev. B 64 195409
[41] Gibbons D F 1958 Phys. Rev. 112 136
[42] Flubacher P, Leadbetter A J and Morrison J A 1959 Philos. Mag. 4 273
[43] Kittel C 1996 Introduction to Solid State Physics (Seventh edition) (New York: John Wiley & Sons, Inc.)
[44] Sparks P W and Swenson C A 1967 Phys. Rev. 163 779
[45] Ma Y and Tse J S 2007 Solid State Commun. 143 161
[46] Ziman J M 1972 Principles of the Theory of Solids (Cambridge: Cambridge University Press)
[47] Ledbetter H M 1973 J. Appl. Phys. 44 1451
[48] Glassbrenner C J and Slack G A 1964 Phys Rev. 134 A1058
[49] Bruls R J 2000 The Thermal Conductivity of Magnesium Silicon Nitride MgSiN_2, Ceramics and Related Materials Ph. D. Thesis, Technische Universiteit Eindhoven
[50] Bruls R, Hintzen H T and Metselaar R 2005 J. Appl. Phys. 98 126101 endfootnotesize
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[7] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[15] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
No Suggested Reading articles found!