Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 076401    DOI: 10.1088/1674-1056/19/7/076401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Correcting the systematic error of the density functional theory calculation: the alternate combination approach of genetic algorithm and neural network

Wang Ting-Ting(王婷婷)a)b), Li Wen-Long(李文龙)a), Chen Zhang-Hui(陈章辉)b)†, and Miao Ling(缪灵)a)
a Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; 
bState Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences,Beijing 100083, China
Abstract  The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a black box and models the error through external statistical information. As a demonstration, the AGANN method has been applied in the correction of the lattice energies from the DFT calculation for 72 metal halides and hydrides. Through the AGANN correction, the mean absolute value of the relative errors of the calculated lattice energies to the experimental values decreases from 4.93% to 1.20% in the testing set. For comparison, the neural network approach reduces the mean value to 2.56%. And for the common combinational approach of genetic algorithm and neural network, the value drops to 2.15%. The multiple linear regression method almost has no correction effect here.
Keywords:  density functional theory      neural network      genetic algorithm      alternate combination  
Accepted manuscript online: 
PACS:  84.35.+i (Neural networks)  
  02.60.Pn (Numerical optimization)  
Fund: Project supported by the National Basic Research Program of China (973 Program) (Grant No. G2009CB929300) and the National Natural Science Foundation of China (Grant No. 60521001 and 60925016).

Cite this article: 

Wang Ting-Ting(王婷婷), Li Wen-Long(李文龙), Chen Zhang-Hui(陈章辉), and Miao Ling(缪灵) Correcting the systematic error of the density functional theory calculation: the alternate combination approach of genetic algorithm and neural network 2010 Chin. Phys. B 19 076401

[1] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[2] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[3] Kohn W 1999 Rev. Mod. Phys. 71 1253
[4] Bechstedt F and Del Sole R 1988 Phys. Rev. B 38 7710
[5] Castleton C W M, H?glund A and Mirbt S 2006 Phys. Rev. B 73 35215
[6] John P P and Yue W 1992 Phys. Rev. B 45 13244
[7] Hu L H, Wang X J, Wong L H and Chen G H 2003 J. Chem. Phys. 119 11501
[8] Wang X J, Wong L H, Hu L H, Chan C Y, Su Z M and Chen G H 2004 J. Chem. Phys. A 108 8514
[9] Duan X M, Li Z H, Song G L, Wang W N, Chen G H and Fan K N 2005 Chem. Phys. Lett. 410 125
[10] Duan X M, Song G L and Li Z H 2004 J. Chem. Phys. 121 7086
[11] Duan X M, Li Z H, Hu H R, Song G L, Wang W N, Chen G H and Fan K N 2005 Chem. Phys. Lett. 409 315
[12] Widrow B and Lehr M A 1990 Proc. IEEE 9 1415
[13] Li W, Chen J F and Wang T 2009 Chin. Phys. B 18 2441
[14] Lance D C 1995 Practical Handbook of Genetic Algorithms (Boca Raton Florida USA: CRC Press)
[15] Li H, Shi L L, Zhang M and Su Z M 2007 J. Chem. Phys. 126 144101
[16] Cook D F, Ragsdale C T and Major R L 2000 Eng. Appl. Artif. Intell. 13 391
[17] Goldberg D E and Holland J H 1988 Machine Learning 3 95
[18] Yu A L 2008 Chin. Phys. B 17 878
[19] Zhang S, Liu H X, Gao D T and Du S D 2003 Chin. Phys. 12 594
[20] John P P, Kieron B and Matthias E 1996 Phys. Rev. Lett. 77 3865
[21] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[22] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[23] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[24] David V 1990 Phys. Rev. B 41 7892
[25] David R L 2006 Handbook of Chemistry and Physics 87th edition (Boca Raton Florida USA: CRC Press) endfootnotesize
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[4] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[5] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[6] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[7] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[8] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[9] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[10] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[11] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[12] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[13] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[14] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[15] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
No Suggested Reading articles found!