Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 064212    DOI: 10.1088/1674-1056/19/6/064212
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Cross-phase modulation instability in optical fibres with exponential saturable nonlinearity and high-order dispersion

Zhong Xian-Qiong(钟先琼) and Xiang An-Ping(向安平)
College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China
Abstract  Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the case of exponential saturable nonlinearity and high-order dispersion. The results show that, the modulation instability characteristics here are similar to those of conventional saturable nonlinearity and Kerr nonlinearity. That is to say, when the fourth-order dispersion has the same sign as that of the second-order one, a new gain spectral region called the second one which is far away from the zero point may appear. The existence of the exponential saturable nonlinearity will make the spectral width as well as the peak gain of every spectral region increase with the input powers before decrease. Namely, for every spectral regime, this may lead to a unique value of peak gain and spectral width for two different input powers. In comparison with the case of conventional saturable nonlinearity, however, when the other parameters are the same, the variations of the spectral width and the peak gain with the input powers will be faster in case of exponential saturable nonlinearity.
Keywords:  nonlinear optics      cross-phase modulation instability      exponential saturable nonlinearity      high-order dispersion  
Received:  16 July 2009      Accepted manuscript online: 
PACS:  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
Fund: Project supported by the Key Program of the Natural Science Foundation of Sichuan Provincial Education Department (Grant No.~2006A124) and the Fundamental Application Research Project of the Department of Science \& Technology of Sichuan Province (Grant N

Cite this article: 

Zhong Xian-Qiong(钟先琼) and Xiang An-Ping(向安平) Cross-phase modulation instability in optical fibres with exponential saturable nonlinearity and high-order dispersion 2010 Chin. Phys. B 19 064212

[1] Huang J S, Chen H F and Xie Z W 2008 Acta Phys. Sin. 57 3435 (in Chinese)
[2] Zhao X D, Xie Z W and Zhang W P 2007 Acta Phys. Sin. 56 6358 (in Chinese)
[3] Kennedy R E, Popov S V and Taylor 2006 Opt. Lett. 31 167
[4] Demircan A and Bandelow U 2005 Opt. Commun. 244 181
[5] Jia W G and Yang X Y 2005 Acta Phys. Sin. 54 1053 (in Chinese)
[6] Kumar A, Labruyere A and Tchofo Dinda P 2003 Opt. Commun . 219 221
[7] Wen S C, Su W H, Zhang H, Fu X Q, Qian L J and Fan D Y 2003 Chin. Phys. Lett . 20 852
[8] Xu W C, Zhang S M, Chen W C, Luo A P, Guo Q and Liu S H 2002 Chin. Phys . 11 39
[9] Xu W C, Wen S C, Li S H, Guo Q and Liao C J 1997 Chin. Phys. Lett . 14 470
[10] Jia W G, Shi P M, Yang X Y, Zhang J P and Fan G L 2006 Acta Phys. Sin. 55 4575 (in Chinese)
[11] Li Q L, Zhu H D, Tang X H, Li C J, Wang X J and Lin L B 2004 Acta Phys. Sin. 53 4194 (in Chinese)
[12] Li Q L, Zhu H D, Li Y M, Tang X H and Lin L B 2005 Acta Phys. Sin. 54 2686 (in Chinese)
[13] Mirtchev T 1998 J. Opt. Am. B 15 171
[14] Agrawal G P, Baldeck P L and Alfano R R 1989 Phys. Rev. A 39 3406
[15] Agrawal G P 1987 Phys. Rev. Lett . 59 880
[16] Dai X Y, Wen S C and Xiang Y J 2008 Acta Phys. Sin. 57 186 (in Chinese)
[17] Li Q L, Sun L L, Chen J L, Li Q S, Tang X H, Qian S and Lin L B 2007 Acta Phys. Sin. 56 805 (in Chinese)
[18] Feng M, Wei Q, Shi J L and Xue Y 2004 Acta Phys. Sin. 53 1088 (in Chinese)
[19] Lu K Q, Zhao W, Yang Y L, Zhu X P, Li J P and Yan P 2004 Chin. Phys . 13 2077
[20] Wen S C and Fan D Y 2001 Chin. Phys . 10 1032
[21] Zhang B Z, Cui H and She W L 2009 Chin. Phys . B 18 209
[22] Wu K, Wu J, Xu H and Zeng H P 2005 Acta Phys. Sin. 54 3749 (in Chinese)
[23] Lyra M L and Gouveia-Neto A S 1994 Opt. Commun. 108 117
[24] Adib B, Heidari A and Tayyari S F 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 2034
[25] Zhu S D 2007 Chaos, Solitons and Fractals 34 1608
[26] Ndzana F II, Mohamadou A and Kofané T C 2007 Opt. Commun. 275 421
[27] Hong W P 2002 Opt. Commun. \textbf{ 213 173
[28] Zhong X Q, Xiang A P, Cai Q and Luo L 2006 Chin. J. Laser 33 1200 (in Chinese)
[29] Zhong X Q, Chen J G and Li D Y 2005 Chin. J. Laser 32 1035 (in Chinese)
[30] Dalt N D, Angelis C D, Nalesso G F and Santagiustina M 1995 Opt. Commun. 121 69
[31] Hickmann J M, Cavalcanti S B, Borges N M, Gouveia E A and Gouveia-Neto A S 1993 Opt. Lett. 18 182
[32] Zhong X Q and Xiang A P 2009 Chin. J. Laser 36 391 (in Chinese)
[33] Zhong X Q and Xiang A P 2007 Opt. Fiber Technol. 13 271
[34] Ren Z J, Wang H, Jin H Z, Ying C F, Jin W M and Wan X 2005 Acta Opt. Sin . 25 165 (in Chinese)
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[3] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[4] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[5] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[6] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[7] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[8] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[9] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[10] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[11] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[12] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[13] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[14] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[15] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
No Suggested Reading articles found!