|
|
Entanglement evolution in an anisotropic two-qubit Heisenberg XYZ model with Dzyaloshinskii-Moriya interaction |
Chen Tao(陈涛), Huang Yan-Xia(黄燕霞), Shan Chuan-Jia(单传家), Li Jin-Xing(李金星), Liu Ji-Bing(刘继兵), and Liu Tang-Kun(刘堂昆)† |
College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China |
|
|
Abstract This paper investigates the entanglement evolution of a two-qubit anisotropic Heisenberg XYZ chain in the presence of Dzyaloshinskii--Moriya interaction. The time evolution of the concurrence is studied for the initial pure entangled states $\cos \theta \left\vert 00\right\rangle +\sin \theta \left\vert 11\right\rangle $ and $\cos \phi \left\vert 01\right\rangle +\sin \phi \left\vert 10\right\rangle $ at zero temperature. The influences of Dzyaloshinskii--Moriya interaction $D$, anisotropic parameter $\varDelta$ and environment coupling strength $\gamma$ on entanglement evolution are analysed in detail. It is found that the effect of noisy environment obviously suppresses the entanglement evolution, and the Dzyaloshinskii--Moriya interaction $D$ acts on the time evolution of entanglement only when the initial state is $\cos \phi \left\vert 01\right\rangle +\sin \phi \left\vert 10\right\rangle $. Finally, a formula of steady state concurrence is obtained, and it is shown that the stable concurrence, which is independent of different initial states and Dzyaloshinskii--Moriya interaction $D$, depends on the anisotropic parameter $\varDelta$ and the environment coupling strength $\gamma$.
|
Received: 03 August 2009
Revised: 13 October 2009
Accepted manuscript online:
|
PACS:
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10904033), Educational Commission of Hubei Province (Grant No.~D20092204) and Natural Science Foundation of Hubei Normal University (Grant No.~2007D21). |
Cite this article:
Chen Tao(陈涛), Huang Yan-Xia(黄燕霞), Shan Chuan-Jia(单传家), Li Jin-Xing(李金星), Liu Ji-Bing(刘继兵), and Liu Tang-Kun(刘堂昆) Entanglement evolution in an anisotropic two-qubit Heisenberg XYZ model with Dzyaloshinskii-Moriya interaction 2010 Chin. Phys. B 19 050302
|
[1] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[2] |
Cheng W W, Huang Y X, Liu T K and Li H 2007 Chin. Phys. 16 38
|
[3] |
Xie L J, Zhang D Y, Tang S Q, Zhan X G and Gao F 2009 Chin. Phys. B 18 3203
|
[4] |
Bennett C H, Brassard G, Cr\'{epeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[5] |
Huang L Y and Fang M F 2008 Chin. Phys. B 17 2339
|
[6] |
Hu X M and Liu J M 2009 Chin. Phys. B 18 0411
|
[7] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[8] |
Ciarc J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
|
[9] |
Zhang X Z, Gong W G, Tan Y G, Ren Z Z and Guo X T 2009 Chin. Phys. B 18 2143
|
[10] |
Wang X G 2001 Phys. Rev. A 64 012313
|
[11] |
Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
|
[12] |
O'Connor K M and Wootters W K 2001 Phys. Rev. A 63 052302
|
[13] |
Khveshchenko D V 2003 Phys. Rev. B 68 193307
|
[14] |
Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
|
[15] |
Du X M, Man Z X and Xia Y J 2008 Acta Phys. Sin. 57 7457 (in Chinese)
|
[16] |
Shang C J, Cheng W W, Liu T K, Huang Y X and Li H 2008 Chin. Phys. B 17 4002
|
[17] |
Barenco A, Deutsch D and Ekert A 1995 Phys. Rev. Lett. 74 4083
|
[18] |
Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
|
[19] |
Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
|
[20] |
Eberly J H and Yu T 2007 Science 316 579
|
[21] |
Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
|
[22] |
Ikram M, Li F L and Zubairy M S 2007 Phys. Rev. A 75 062336.
|
[23] |
Man Z X, Xia Y J and An N B 2008 J. Phys. B 41 085503
|
[24] |
Yang Q, Yang M and Cao Z L 2008 Chin. Phys. Lett. 25 825
|
[25] |
Chou C S, Yu T and Hu B L 2008 Phys. Rev. E 77 011112
|
[26] |
Gorden G and Kurizki G 2006 Phys. Rev. Lett. 97 110503
|
[27] |
Ficek Z and Tanas R 2008 Phys. Rev. A 77 054301
|
[28] |
Shan C J, Liu J B, Cheng W W, Liu T K, Huang Y X and Li H 2009 Commum. Theor. Phys. 51 1013
|
[29] |
Wang J, Batelaan H, Podany J and Starace A F 2006 J. Phys. B 39 4343
|
[30] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[31] |
Shan C J, Cheng W W, Liu T K, Liu J B and Wei H 2008 Chin. Phys. Lett. 25 3115
|
[32] |
Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241
|
[33] |
Moriya T 1960 Phys. Rev. 120 91
|
[34] |
Zorko A, Nellutla S, van Tol L, Brunel L C, Bert F, Duc F, Trombe J-C, de Vries M A, Harrison A and Mendels P 2008 Phys. Rev. Lett. 101 026405
|
[35] |
Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
|
[36] |
Lindblad G 1976 Commun. Math. Phys. 48 199
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|