Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 047309    DOI: 10.1088/1674-1056/19/4/047309
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Experimental studies of extraordinary light transmission through periodic arrays of subwavelength square and rectangular holes in metal films

Hua Yi-Lei(华一磊)a), Fu Jin-Xin傅晋欣)a), Li Jiang-Yan(李江艳)a), Li Zhi-Yuan(李志远)a)†, and Yang Hai-Fang(杨海方)b)
a Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190, China; Laboratory of Microfabrication, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190, China
Abstract  We fabricate a series of periodic arrays of subwavelength square and rectangular air holes on gold films, and measure the transmission spectra of these metallic nanostructures. By changing some geometrical and physical parameters, such as array period, air hole size and shape, and the incident light polarization, we verify that both global surface plasmon resonance and localized waveguide mode resonance are influential on enhancing the transmission of light through nanostructured metal films. These two resonances induce different behaviours of transmission peak shift. The transmission through the rectangular air-hole structures exhibits an obvious polarization effect dependent on the morphology. Numerical simulations are also made by a plane-wave transfer-matrix method and in good consistency with the experimental results.
Keywords:  surface plasmon      extraordinary light transmission      metal film  
Received:  19 May 2009      Revised:  10 August 2009      Accepted manuscript online: 
PACS:  78.66.Bz (Metals and metallic alloys)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  73.22.Lp (Collective excitations)  
  78.68.+m (Optical properties of surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~10525419, 60736041 and 10874238), and the National Key Basic Research Special Foundation of China (Grant No.~2006CB302901).

Cite this article: 

Hua Yi-Lei(华一磊), Fu Jin-Xin傅晋欣), Li Jiang-Yan(李江艳), Li Zhi-Yuan(李志远), and Yang Hai-Fang(杨海方) Experimental studies of extraordinary light transmission through periodic arrays of subwavelength square and rectangular holes in metal films 2010 Chin. Phys. B 19 047309

[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nautre 391 667
[2] Alkaisi M M, Blaikie R J, McNab S J, Cheung R and Cumming D R S 1999 Appl. Phys. Lett. 75 3560
[3] Luo X G and lshihara T 2004 Jpn. J. Appl. Phys. 43 4017
[4] Xue W R, Guo Y N and Zhang W M 2009 Chin. Phys. B 18 2529
[5] Yang P F, Gu Y and Gong Q H 2009 Chin. Phys. B 18 3880
[6] Wang L, Cao J X, Wang Y, Niu T Y, Liu L and Lu Y 2008 Chin. Phys. B 17 2257
[7] Collin S, Pardo F and Pelouard J L 2003 Appl. Phys. Lett. 83 1521
[8] Liu C, Kamaev V and Vardeny Z V 2005 Appl. Phys. Lett. 86 143501
[9] Genet C and Ebbesen T W 2007 Nature 445 39
[10] Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B and Ebbesen T W 2001 Phys. Rev. Lett. 86 1114
[11] Barnes W L, Murray W A, Dintinger J, Devaux E and Ebbesen T W 2004 Phys. Rev. Lett. 92 107401
[12] Ruan Z C and Qiu M 2006 Phys. Rev. Lett. 96 233901
[13] Sun M, Tian J, Li Z Y, Cheng B Y, Zhang D Z, Jin A Z and Yang H F 2006 Chin. Phys. Lett. 23 486
[14] Sun M, Tian J, Han S Z, Li Z Y, Cheng B Y and Zhang D Z 2006 J. Appl. Phys. 100 024320
[15] Fang X, Li Z Y, Long Y B, Wei H X, Liu R J, Ma J Y, Kamran M, Zhao H Y, Han X F, Zhao B R and Qiu X G 2007 Phys. Rev. Lett. 99 066805
[16] Rather H 1998 Surface Plasmons on Smooth and Rough Surfaces and on Grating} (Berlin: Springer)
[17] Koerkamp K J K, Enoch S, Segerink F B, van Hulst N F and Kuipers L 2004 Phys. Rev. Lett. 92 183901
[18] Degiron A and Ebbesen T W 2005 J. Opt. A: Pure Appl. Opt. 7 S90
[19] van der Molen K L, Koerkamp K J K, Enoch S, Segerink F B, van Hulst N F and Kuipers L 2005 Phys. Rev. B 72 045421
[20] Li Z Y and Ho K M 2003 Phys. Rev. B 67 165104
[21] Sang H Y, Li Z Y and Gu B Y 2005 J. Appl. Phys. 97 033102
[22] Lin L L, Li Z Y and Ho K M 2003 J. Appl. Phys. 94 811
[23] Li Z Y and Lin L L 2003 Phys. Rev. E 67 165104
[24] Liu H T and Lalanne P 2008 Nature 452 }728
[25] Handbook of Optical Constants of Solids} 1985 ed. Palik E D (Orlando: Academic Press)
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[9] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[10] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[11] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[12] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[13] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[14] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[15] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
No Suggested Reading articles found!