|
|
Density-functional investigation of 3d,4d,5d impurity doped Au6 clusters |
Zhang Meng(张孟), Feng Xiao-Juan(冯晓娟), Zhao Li-Xia(赵丽霞), He Li-Ming(贺黎明), and Luo You-Hua(罗有华)† |
Department of Physics, East China University of Science and Technology, Shanghai 200237, China |
|
|
Abstract The general features of the geometries and electronic properties for 3d, 4d, and 5d transition-metal atom doped Au$_{6}$ clusters are systematically investigated by using relativistic all-electron density functional theory in the generalized gradient approximation (GGA). A number of structural isomers are considered to search the lowest-energy structures of $M$@Au$_{6}$ clusters ($M$=3d, 4d and 5d transition-metal atoms), and the transition metal atom locating in the centre of an Au$_{6}$ ring is found to be in the ground state for all the $M$@Au$_{6 }$ clusters. All doped clusters, expect for Pd@Au$_{6}$, show large relative binding energies compared with a pure Au$_{7 }$ cluster, indicating that doping by 3d, 4d, 5d transition-metal atoms could stabilize the Au$_{6}$ ring and promote the formation of a new binary alloy cluster.
|
Received: 18 August 2009
Revised: 16 October 2009
Accepted manuscript online:
|
PACS:
|
61.46.Bc
|
(Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.15.Nc
|
(Total energy and cohesive energy calculations)
|
|
Cite this article:
Zhang Meng(张孟), Feng Xiao-Juan(冯晓娟), Zhao Li-Xia(赵丽霞), He Li-Ming(贺黎明), and Luo You-Hua(罗有华) Density-functional investigation of 3d,4d,5d impurity doped Au6 clusters 2010 Chin. Phys. B 19 043103
|
[1] |
Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162
|
[2] |
Huber K P and Herzberg G 1979 Constants of Diatomic Molecules (New York: Van Nostrand Reinhold)
|
[3] |
Simard B and Hackett P A 1990 J. Mol. Spectrosc. 142 310
|
[4] |
Ho J, Ervin K and Lineberger W 1990 J. Chem. Phys. 93 6987
|
[5] |
Taylor K, Pettitte-Hall C, Cheshnovsky O and Smalley R 1992 J. Chem. Phys. 96 3319
|
[6] |
Jackschath C, Rabin I and Schulze W 1992 Ber. Bunsenges. Phys. Chem. 96 1200
|
[7] |
Barnett R N, Cleveland C I, H?kkinen H, Luedtke W D, Yamouleas C and Landsman U 1999 Eur. Phys. J. D 9 95
|
[8] |
H?kkinen H, Yoon B, Landman U, Li X, Zhai H J and Wang L S 2003 J. Phys. Chem. A 107 6168
|
[9] |
Fernández E M, Soler J M, Garzón I L and Balbás L C 2004 Phys. Rev. B 70 165403
|
[10] |
Mao H P, Wang H Y, Ni Y, Xu G L, Ma M Z, Zhu Z H and Tang Y J 2004 Acta Phys. Sin. 53 1766 (in Chinese)
|
[11] |
Gruene P, Rayner D M, Redlich B, van der Meer A F G, Lyon J T, Meijer G and Fielicke A 2008 Science 321 674
|
[12] |
Chen M X and Yan X H 2008 J. Chem. Phys. 128 174305
|
[13] |
Pyykk? P and Runeberg N 2002 Angew. Chem. Int. Ed. 41 2174
|
[14] |
Fa W and Dong J M 2008 J. Chem. Phys. 128 144307
|
[15] |
Wang L M, Bulusu S, Huang W, Pal R, Wang L S and Zeng X C 2007 J. Am. Chem. Soc.] 129 15136
|
[16] |
Tanaka H, Neukermans S, Janssens E, Silverans R E and Lievens P 2003 J. Am. Chem. Soc. 125 2862
|
[17] |
Janssens E, Tanaka H, Neukermans S, Silverans R E and Lievens P 2003 New J. Phys. 5 46
|
[18] |
Yamada Y and Castleman Jr A W 1992 J. Chem. Phys. 97 4543
|
[19] |
Sun Q, Gong X G, Zheng Q Q, Sun D Y and Wang G H 1996 Phys. Rev. B 54 }10896
|
[20] |
Wang H Y, Li X B, Tang Y J, King R B and Schaefer H F 2007 Chin. Phys. 16] 1660
|
[21] |
Van De Walle J, Tarento R J and Joyes P 1999 Surf. Rev. Lett. 6 307
|
[22] |
Bouwen W, Vanhoutte F, Despa F, Bouckaert S, Neukermans S, Kuhn L T, Weidele H, Lievens P and Silverans R E 1999 Chem. Phys. Lett. 314 227
|
[23] |
Heinebrodt M, Malinowski N, Tast F, Branz W, Billas I M L and Martin T P 1999 J. Chem. Phys. 110 9915
|
[24] |
Koyasu K, Mitsui M, Nakajima A and Kaya K 2002 Chem. Phys. Lett. 358 224
|
[25] |
Chen X, Peng X, Deng K M, Xiao C Y, Hu F L and Tan W S 2009 Acta Phys. Sin}. 58 5370 (in Chinese)
|
[26] |
Wang S Y, Yu J Z, Mizuseki H, Sun Q, Wang C Y and Kawazoe Y 2004 Phys. Rev. B 70 165413
|
[27] |
Li X, Kiran B, Li J, Zhai H J and Wang L S 2002 Angew. Chem. Int. Ed.] 41 4786
|
[28] |
H?kkinen H, Abbet S, Sanchez A, Heiz U and Landman U 2003 Angew. Chem. Int. Ed.] 42 1297
|
[29] |
Zhao L X, Feng X J, Cao T T, Liang X and Luo Y H 2009 Chin. Phys. B 18 2709
|
[30] |
Neukermans S, Janssens E, Tanaka H, Silverans R E and Lievens P 2003 Phys. Rev. Lett. 90 033401
|
[31] |
Tanaka H, Neukermans S, Janssens E, Silverans R E and Lievens P 2003 J. Chem. Phys. 119 7115
|
[32] |
Janssens E, Tanaka H, Neukermans S, Silverans R E and Lievens P 2004 Phys. Rev. B 69 085402
|
[33] |
Torres M B, Fernández E M and Balbás L C 2005 Phys. Rev. B 71] 155412
|
[34] |
Li X, Kiran B, Cui L F and Wang L S 2005 Phys. Rev. Lett. 95 253401
|
[35] |
Zhang M, He L M, Zhao L X, Feng X J and Luo Y H 2009 J. Phys. Chem.} C 113 6491
|
[36] |
Ordejón P, Artacho E and Soler J M 1996 Phys. Rev. B 53 R10441
|
[37] |
Sánchez-Portal D, Ordejón P, Artacho E and Soler J M 1997 Int. J. Quantum Chem.] 65 453
|
[38] |
Delley B 1990 J. Chem. Phys. 92 508
|
[39] |
Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|