Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 043101    DOI: 10.1088/1674-1056/19/4/043101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Calculation of multicentre nuclear attraction integrals over Slater-type orbitals using unsymmetrical one-range addition theorems

Israfil I. Guseinova), N. Seckin Gorgunb), and Nimet Zaimb)
a Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, ?anakkale, Turkey; b Department of Physics, Faculty of Arts and Sciences, Trakya University, Edirne, Turkey
Abstract  Using the unsymmetrical one-range addition theorems introduced by one of the authors with the help of complete orthonormal sets of $\varPsi ^\alpha $-exponential type orbitals ($\alpha = 1,0, - 1, - 2,...)$, this paper presents the sets of series expansion relations for multicentre nuclear attraction integrals over Slater-type orbitals arising in Hartree--Fock--Roothaan equations for molecules. The final results are expressed through multicentre charge density expansion coefficients and basic integrals. The convergence of the series is tested by calculating concrete cases for arbitrary values of parameters of orbitals.
Keywords:  Slater-type orbitals      nuclear attraction integrals      Hartree--Fock--Roothaan equations      unsymmetrical one-range addition theorems  
Received:  25 May 2009      Revised:  27 July 2009      Accepted manuscript online: 
PACS:  31.15.xr (Self-consistent-field methods)  

Cite this article: 

Israfil I. Guseinov, N. Seckin Gorgun, and Nimet Zaim Calculation of multicentre nuclear attraction integrals over Slater-type orbitals using unsymmetrical one-range addition theorems 2010 Chin. Phys. B 19 043101

[1] Roothaan C C J 1951 Rev. Mod. Phys. 23 69
[2] Roothaan C C J 1960 Rev. Mod. Phys. 32 179
[3] Levine I N 2000 Quantum Chemistry 5th ed. (NJ: Prentice Hall)
[4] Boys S F 1955 Proc. Roy. Soc. Lond. A 200 542
[5] Kato T 1957 Commun. Pure Appl. Math. 10 151
[6] Agmon S 1982 Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of $N$-Body Schr?dinger Operators} (Princeton: Princeton University Press)
[7] Guseinov I I 2008 J. Theor. Comput. Chem. 7 257
[8] Guseinov I I 2002 Int. J. Quantum Chem. 90 114
[9] Gradshteyn I S and Ryzhik I M 1980 Tables of Integrals, Sums, Series and Products 4th ed. (New York: Academic Press)
[10] Guseinov I I 1970 J. Phys. B 3 1399
[11] Condon E U and Shortley G H 1970 Theory of Atomic Spectra (Cambridge: Cambridge University Press)
[12] Guseinov I I 2007 J. Math. Chem. 42 415
[1] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[2] Transition parameters of Li-like ions (Z=7-11) in dense plasmas
Xiang-Fu Li(李向富), Li-Ping Jia(贾利平), Hong-Bin Wang(王宏斌), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(5): 053102.
[3] Effect of radiation on compressibility of hot dense sodium and iron plasma using improved screened hydrogenic model with l splitting
Amjad Ali, G Shabbir Naz, Rukhsana Kouser, Ghazala Tasneem, M Saleem Shahzad, Aman-ur-Rehman, and M H Nasim. Chin. Phys. B, 2021, 30(3): 033102.
[4] Ion population fraction calculations using improved screened hydrogenic model with l-splitting
Amjad Ali, G Shabbir Naz, Rukhsana Kouser, Ghazala Tasneem, M Saleem Shahzad, Aman-ur-Rehman, M H Nasim. Chin. Phys. B, 2018, 27(10): 105201.
[5] Relativistic calculations of fine-structure energy levels of He-like Ar in dense plasmas
Xiang-Fu Li(李向富), Gang Jiang(蒋刚). Chin. Phys. B, 2018, 27(7): 073101.
[6] High-level theoretical study of the evolution of abundances and interconversion of glycine conformers
Fan Liu(刘凡), Jing Yu(于静), Yan-Ru Huang(黄艳茹). Chin. Phys. B, 2018, 27(4): 043102.
[7] A numerical Hartree self-consistent field calculation of an autoionization resonance parameters for a doubly excited 2s2, 3s2, and 4s2 states of He atom with a complex absorbing potential
Tsogbayar Tsednee, Danny L Yeager. Chin. Phys. B, 2017, 26(8): 083101.
[8] Radiative properties of matter based on quantum statistical method
Rukhsana Kouser, G Tasneem, Muhammad Saleem Shahzad, S Sardar, Amjad Ali, M H Nasim, M Salahuddin. Chin. Phys. B, 2017, 26(7): 075201.
[9] Atomic structure and transition properties of H-like Al in hot and dense plasmas
Xiang-Fu Li(李向富), Gang Jiang(蒋刚), Hong-Bin Wang(王宏斌), Qian Sun(孙乾). Chin. Phys. B, 2017, 26(1): 013101.
[10] Theory of specific heat of vortex liquid of high Tc superconductors
Chen Bai(白晨), Cheng Chi(迟诚), Jiangfan Wang(王江帆). Chin. Phys. B, 2016, 25(10): 107404.
[11] Comparing two iteration algorithms of Broyden electron density mixing through an atomic electronic structure computation
Man-Hong Zhang(张满红). Chin. Phys. B, 2016, 25(5): 053102.
[12] Simulating electron momentum spectra of iso-C2H2Cl2:A study of the core electronic structure
Huang Yan-Ru (黄艳茹), Chen Ming-Ming (陈明明). Chin. Phys. B, 2014, 23(1): 013101.
[13] Four-parameter analytical local model potential for atoms
Yu Fei(余飞), Sun Jiu-Xun(孙久勋) Tian Rong-Gang(田荣刚), and Yang Wei(杨维). Chin. Phys. B, 2009, 18(10): 4234-4241.
[14] Spectra and oscillator strengths of 3p63d9--3p53d10 and 3p63d9--3p63d84p transitions for cobalt-like Sn23+ ion
Chen Ming-Lun(陈明伦) and Yu Xiao-Guang(余晓光). Chin. Phys. B, 2009, 18(1): 157-160.
[15] Two-electron and one-photon transitions in highly charged nickel-like ions
Xie Lu-You(颉录有), Dong Chen-Zhong(董晨钟), Jiang Jun(蒋军), Wan Jian-Jie(万建杰), and Yan Jun(颜君). Chin. Phys. B, 2008, 17(9): 3294-3299.
No Suggested Reading articles found!