|
|
Atomic structure and transition properties of H-like Al in hot and dense plasmas |
Xiang-Fu Li(李向富)1,2, Gang Jiang(蒋刚)1,3, Hong-Bin Wang(王宏斌)1, Qian Sun(孙乾)2 |
1. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 2. College of Electrical Engineering, Longdong University, Qingyang 745000, China; 3. The Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Chengdu 610065, China |
|
|
Abstract The atomic structure and transition properties of H-like Al embedded in hot and dense plasmas are investigated using modified GRASP2K code. The plasma screening effect on the nucleus is described using the self-consistent field ion sphere model. The effective nuclear potential decreases much more quickly with increasing average free electron density, but increases slightly with increasing electron temperature. The variations of the transition energies, transition probabilities, and oscillator strengths with the free electron density and electron temperature are the same as that of the effective nuclear potential. The results reported in this work agree well with other available theoretical results and are useful for plasma diagnostics.
|
Received: 13 July 2016
Revised: 25 September 2016
Accepted manuscript online:
|
PACS:
|
31.15.ac
|
(High-precision calculations for few-electron (or few-body) atomic systems)
|
|
31.15.ag
|
(Excitation energies and lifetimes; oscillator strengths)
|
|
31.15.xr
|
(Self-consistent-field methods)
|
|
52.27.Gr
|
(Strongly-coupled plasmas)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474208 and 11565018), the Department of Education Fund Item of Gansu Province, China (Grant No. 2015B-109), and the Doctoral Scientific Fund Project of Longdong University, China (Grant No. XYBY1601). |
Corresponding Authors:
Gang Jiang
E-mail: gjiang@scu.edu.cn
|
Cite this article:
Xiang-Fu Li(李向富), Gang Jiang(蒋刚), Hong-Bin Wang(王宏斌), Qian Sun(孙乾) Atomic structure and transition properties of H-like Al in hot and dense plasmas 2017 Chin. Phys. B 26 013101
|
[1] |
Gao C, Zeng J and Yuan J M 2011 High Energy Density Phys. 7 54
|
[2] |
Killian T C, Pattard T, Pohl T and Rost J M 2007 Phys. Rep. 449 77
|
[3] |
Saha B and Fritzsche S 2006 Phys. Rev. E 73 036405
|
[4] |
Saha B, Mukherjee P K and Bielinska-Waz D 2005 J. Quant. Spectrosc. Radiat. Transf. 92 1
|
[5] |
Li B W, Dong C Z, Jiang J and Wang J G 2010 Plasma Science and Technology 12 372
|
[6] |
Winkler P 1996 Phys. Rev. E 53 5517
|
[7] |
Griem H R 1988 Phys. Rev. A 15 2943
|
[8] |
Skupski S 1980 Phys. Rev. A 21 1316
|
[9] |
Rogers F J 1974 Phys. Rev. A 10 2441
|
[10] |
Greig J R, Griem H R, Jones L A and Oda T 1970 Phys. Rev. Lett. 24 3
|
[11] |
Dong C Z, Xie L Y, W J J and Jiang J 2005 Chin. Phys. 14 1108
|
[12] |
Saemann A, Eidmann K, Golovkin I E, Mancini R C, Andersson E, Förster E and Witte K 1999 Phys. Rev. Lett. 82 4843
|
[13] |
Gamelet G, Jacgle P, Lemaire P, Carrilon A 1990 J. Quant. Spectrosc. Radiat. Transfer 44 71
|
[14] |
Böddeker S, Günter S, Könies A, Hitzschkeet L and Kunze H J 1990 Phys. Rev. E 47 2785
|
[15] |
Bradley D K, Kilkenny J, Rose S J and Hares J D 1987 Phys. Rev. Lett. 59 2995
|
[16] |
Nantel M, Ma G, Gu S, Côté C Y, Itatani J and Umstadter D 1998 Phys. Rev. Lett. 80 4442
|
[17] |
Murillo M S and Weisheit J C 1998 Phys. Rep. 302 1
|
[18] |
Saha B, Mukherjee P K, Bielińska-Waz D and Karwowskib J 2003 J. Quant. Spectrosc. Radiat. Transfer 78 131
|
[19] |
Ray D and Mukherjee P K 1998 J. Phys. B:At. Mol. Opt. Phys. 31 3479
|
[20] |
Ning L N and Qi Y Y 2012 Chin. Phys. B 21 123201
|
[21] |
Xie L Y, Wang J G, Janev R K, Qu Y Z and Dong C Z 2012 Eur. Phys. J. D 66 125
|
[22] |
Ichimaru S 1982 Rev. Mod. Phys. 54 1017
|
[23] |
Rozsnyai B F 1972 Phys. Rev. A 5 1137
|
[24] |
Vinko S M, Ciricosta O, Preston T R, et al. 2015 Nature Commun. 6 6397
|
[25] |
Vinko S M, Ciricosta O, Cho B I, et al. 2012 Nature 482 59
|
[26] |
Ciricosta O, Vinko S M, Chung H K, et al. 2012 Phys. Rev. Lett. 109 065002
|
[27] |
Cho B I, Engelhorn K, Vinko S M, et al. 2012 Phys. Rev. Lett. 109 245003
|
[28] |
Stewart J C, Pyatt K D 1966 Astrophys. J. 144 1203
|
[29] |
Ecker G and Kroll W 1963 Phys. Fluids 6 62
|
[30] |
Preston T R, Vinko S M, Ciricosta O, Chung H K, Lee R W and Warka J S 2013 High Energy Density Physics 9 258
|
[31] |
Hoarty D J, Allan P, James S F, Brown C R D, Hobbs L M R, Hill M P, Harris J W O, Morton J, Brookes M G, Shepherd R, Dunn J, Chen H, Marley E V, Beiersdorfer P, Chung H K, Lee R W, Brown G and Emig J 2013 Phys. Rev. Lett. 110 265003
|
[32] |
Hoarty D J, Allan P, James S F, Brown C R D, Hobbs L M R, Hill M P, Harris J W O, Morton J, Brookes M G, Shepherd R, Dunn J, Chen H, Marley E V, Beiersdorfer P, Chung H K, Lee R W, Brown G and Emig J 2013 High Energy Density Physics 9 661
|
[33] |
Bhattacharyya S, Saha J K and Mukherjee T K 2015 Phys. Rev. A 91 042515
|
[34] |
Bhattacharyya S, Sil A N, Fritzsche S and Mukherjee P K 2008 Eur. Phys. J. D 46 1
|
[35] |
Das M 2012 Physical of Plasmas 19 092707
|
[36] |
Salzmann D and Szichman H 1987 Phys. Rev. A 35 807
|
[37] |
Jönsson P, He X H, Fischer C F and Grant I P 2007 Computer Physics Communication 177 597
|
[38] |
Jönsson P, Gaigalas G, Bieron J, Fischer C F and Grant I P 2013 Computer Physics Communication 184 2197
|
[39] |
Li X D, Xu Z Z and Rosmej F B 2006 J. Phys. B:At. Mol. Opt. Phys. 39 3373
|
[40] |
Li Y Q, Wu J H, Hou Y and Yuan J M 2008 J. Phys. B:At. Mol. Opt. Phys. 41 145002
|
[41] |
Rozsnyai B F 1982 J. Quant. Spectrosc. Radiat. Transfer 27 211
|
[42] |
Rozsnyai B F 1991 Phys. Rev. A 43 3035
|
[43] |
Liberman D A 1979 Phys. Rev. A 20 4981
|
[44] |
Yuan J M 2002 Phys. Rev. E 66 047401
|
[45] |
Skupsky S 1980 Phys. Rev. A 21 1316
|
[46] |
Salzmann D, Yin R Y and Pratt R H 1985 Phys. Rev. A 6 3627
|
[47] |
NIST Database
|
[48] |
Norrington P H, Kingston A E and Boone A W 2000 J. Phys. B:At. Mol. Opt. Phys. 33 1767
|
[49] |
Jitrik O and Bunge C F 2004 J. Phys. Chem. Ref. Data 33 1059
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|