Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 083101    DOI: 10.1088/1674-1056/26/8/083101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

A numerical Hartree self-consistent field calculation of an autoionization resonance parameters for a doubly excited 2s2, 3s2, and 4s2 states of He atom with a complex absorbing potential

Tsogbayar Tsednee, Danny L Yeager
Department of Chemistry, Texas A & M University, College Station, TX 77843, USA
Abstract  

The self-consistent Hartree-Fock equation for the He atom is solved using the pseudospectral method. The Feshbach-type autoionization resonance parameters for doubly excited 2s2, 3s2, and 4s2 1S states of He have been determined by adding a complex absorbing potential to the Hamiltonian. The Riss-Meyer iterative and Padé extrapolation methods are applied to obtain reliable values for the autoionization resonance parameters, which are compared to previous results in the literature.

Keywords:  self-consistent field      Hartree-Fock equation      helium autoionization      pseudospectral method  
Received:  03 February 2017      Revised:  27 March 2017      Accepted manuscript online: 
PACS:  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  31.15.xr (Self-consistent-field methods)  
  32.80.Zb (Autoionization)  
Corresponding Authors:  Tsogbayar Tsednee     E-mail:  tsogbayar.tsednee@tamu.edu
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Tsogbayar Tsednee, Danny L Yeager A numerical Hartree self-consistent field calculation of an autoionization resonance parameters for a doubly excited 2s2, 3s2, and 4s2 states of He atom with a complex absorbing potential 2017 Chin. Phys. B 26 083101

[1] Madden R P and Codling K 1963 Phys. Rev. Lett. 10 516
[2] Shenstone A G 1931 Phys. Rev. 31 1701
[3] Bhatia A K and Temkin A 1975 Phys. Rev. A 11 2018
[4] Bhatia A K and Temkin A 1984 Phys. Rev. A 29 1895
[5] Oza D H 1986 Phys. Rev. A 33 824
[6] Ho Y K 1979 J. Phys. B 12 387
[7] Ho Y K 1980 Phys. Rev. Lett. 79A 44
[8] Ho Y K 1981 Phys. Rev. A 23 2137
[9] Ho Y K 1983 Phys. Rep. 99 1
[10] Ho Y K 1986 Phys. Rev. A 34 4402
[11] Fischer C F and Idrees M 1990 J. Phys. B: At. Mol. Opt. Phys. 23 679
[12] Tang J, Watanabe S and Matsuzawa M 1992 Phys. Rev. A 46 2437
[13] Lindroth E 1994 Phys. Rev. A 49 4473
[14] Bürgers A, Wintgen D and Rost J M 1995 J. Phys. A: Math. Gen. 283163
[15] Zdanska P R and Moiseyev N 2005 J. Chem. Phys. 123 194105
[16] Sajeev Y, Sindelka M and Moiseyev N 2006 Chem. Phys. 329 307
[17] Bravaya K B, Zuev D, Epifanovsky E and Krylov A I 2013 J. Chem.Phys. 138 124106
[18] Liang L and Yeager D L 2014 J. Chem. Phys. 140 094305
[19] Kapralova-Zdanska P R and Smydke J 2013 J. Chem. Phys. 138 024105
[20] Riss U V and Meyer H D 1993 J. Phys. B: At. Mol. Opt. Phys. 26 4503
[21] Lefebvre R, Sindelka M and Moiseyev N 2005 Phys. Rev. A 72 052704
[22] Santra R 2006 Phys. Rev. A 74 034701
[23] Ackad E and Horbatsch M 2007 Phys. Rev. A 76 022503
[24] Durand Ph and Paidarova I 2013 J. Phys. B: At. Mol. Opt. Phys. 46075001
[25] Landau A, Haritan I, Kapralova-Zdanska P R and Moiseyev N 2016 J.Phys. Chem. A 120 3098
[26] Funaro D 1992 Polynomial Apprixamtion of Differential Equations(Berlin: Springer)
[27] Hesthaven J S, Gottlieb S and Gottlieb D 2007 Spectral Methods for Time-Dependent Problems (Cambridge: Cambridge University Press)
[28] Tsogbayar Ts and Horbatsch M 2013 J. Phys. A: Math. Theor. 46085004
[29] Fischer C F 1977 The Hartree-Fock Method for Atoms (New York: Wiley)
[30] Roetti C and Clementi E 1974 J. Chem. Phys. 60 4725
[31] Zou Z and Chu S I 2005 Phys. Rev. A 71 022513
[32] Bhatia A K 2008 Phys. Rev. A 77 052707
[33] Moiseyev N 1998 Phys. Rep. 302 21
[34] Santra R and Cederbaum L S 2002 Phys. Rep. 368 1
[35] Muga J G, Palao J P, Navarro B and Egusquiza I L 2004 Phys. Rep. 395357
[1] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[2] Electronic structure from equivalent differential equations of Hartree-Fock equations
Hai Lin(林海). Chin. Phys. B, 2019, 28(8): 087101.
[3] Comparing two iteration algorithms of Broyden electron density mixing through an atomic electronic structure computation
Man-Hong Zhang(张满红). Chin. Phys. B, 2016, 25(5): 053102.
[4] Quantum path control and isolated attosecond pulse generation in the combination of near-infrared and terahertz pulses
Zhong Hui-Ying (钟慧英), Guo Jing (郭静), Zhang Hong-Dan (张宏丹), Du Hui (杜慧), Liu Xue-Shen (刘学深). Chin. Phys. B, 2015, 24(7): 073202.
[5] Multiple patterns of diblock copolymer confined in irregular geometries with soft surface
Li Ying (李颖), Sun Min-Na (孙敏娜), Zhang Jin-Jun (张进军), Pan Jun-Xing (潘俊星), Guo Yu-Qi (郭宇琦), Wang Bao-Feng (王宝凤), Wu Hai-Shun (武海顺). Chin. Phys. B, 2015, 24(12): 126403.
[6] Application of self-consistent field theory to self-assembled bilayer membranes
Zhang Ping-Wen (张平文), Shi An-Chang (史安昌). Chin. Phys. B, 2015, 24(12): 128707.
[7] Conservative method for simulation of a high-order nonlinear Schrödinger equation with a trapped term
Cai Jia-Xiang (蔡加祥), Bai Chuan-Zhi (柏传志), Qin Zhi-Lin (秦志林). Chin. Phys. B, 2015, 24(10): 100203.
[8] Multi-symplectic method for the coupled Schrödinger-KdV equations
Zhang Hong (张弘), Song Song-He (宋松和), Zhou Wei-En (周炜恩), Chen Xu-Dong (陈绪栋). Chin. Phys. B, 2014, 23(8): 080204.
[9] Average vector field methods for the coupled Schrödinger–KdV equations
Zhang Hong (张弘), Song Song-He (宋松和), Chen Xu-Dong (陈绪栋), Zhou Wei-En (周炜恩). Chin. Phys. B, 2014, 23(7): 070208.
[10] Self-consistent field theory of adsorption of flexible polyelectrolytes onto an oppositely charged sphere
Tong Zhao-Yang (童朝阳), Zhu Yue-Jin (诸跃进), Tong Chao-Hui (童朝晖). Chin. Phys. B, 2014, 23(3): 038202.
[11] A conservative Fourier pseudospectral algorithm for the nonlinear Schrödinger equation
Lv Zhong-Quan (吕忠全), Zhang Lu-Ming (张鲁明), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2014, 23(12): 120203.
[12] A conservative Fourier pseudospectral algorithm for a coupled nonlinear Schrödinger system
Cai Jia-Xiang (蔡加祥), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2013, 22(6): 060207.
[13] Multisymplectic implicit and explicit methods for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang (蔡加祥), Yang Bin (杨斌), Liang Hua (梁华). Chin. Phys. B, 2013, 22(3): 030209.
[14] Explicit multi-symplectic method for the Zakharov–Kuznetsov equation
Qian Xu(钱旭), Song Song-He(宋松和), Gao Er(高二), and Li Wei-Bin(李伟斌) . Chin. Phys. B, 2012, 21(7): 070206.
[15] Cylindrical-confinement-induced phase behaviours of diblock copolymer melts
Liu Mei-Jiao(刘美娇), Li Shi-Ben(李士本), Zhang Lin-Xi(章林溪), and Wang Xiang-Hong(王向红). Chin. Phys. B, 2010, 19(2): 028101.
No Suggested Reading articles found!