Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 107404    DOI: 10.1088/1674-1056/25/10/107404
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theory of specific heat of vortex liquid of high Tc superconductors

Chen Bai(白晨), Cheng Chi(迟诚), Jiangfan Wang(王江帆)
Institute of Theoretical Physics, School of Physics, Peking University, Beijing 100871, China
Abstract  Superconducting thermal fluctuation (STF) plays an important role in both thermodynamic and transport properties in the vortex liquid phase of high Tc superconductors. It was widely observed in the vicinity of the critical transition temperature. In the framework of Ginzburg-Landau-Lawrence-Doniach theory in magnetic field, a self-consistent analysis of STF including all Landau levels is given. Besides that, we calculate the contribution of STF to specific heat in vortex liquid phase for high Tc cuprate superconductors, and the fitting results are in good agreement with experimental data.
Keywords:  superconducting thermal fluctuation      vortex liquid      self-consistent approximation      specific heat  
Received:  18 May 2016      Revised:  07 June 2016      Accepted manuscript online: 
PACS:  74.40.-n (Fluctuation phenomena)  
  74.25.Uv (Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))  
  31.15.xr (Self-consistent-field methods)  
  65.40.Ba (Heat capacity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274018).
Corresponding Authors:  Jiangfan Wang     E-mail:  haihunshan@yeah.net

Cite this article: 

Chen Bai(白晨), Cheng Chi(迟诚), Jiangfan Wang(王江帆) Theory of specific heat of vortex liquid of high Tc superconductors 2016 Chin. Phys. B 25 107404

[1] Tinkham M 1996 Introduction to Superconductivity (New York: McGraw-Hill)
[2] Larkin A and Varlamov A 2005 Theory of Fluctuations in Superconductors (New York: Oxford University Press)
[3] Levanyuk A P 1959 Zh. Eksp. Teor. Fiz. 36 810
[4] Ginzburg V L 1960 Fiz. Tverd Tela 2 203
[5] Ginzburg V L 1961 Sov. Phys. Solid State 2 1824
[6] Abrikosov A A 1957 Zh Eksp Teor Fiz 32 1442
[7] Abrikosov A A 1957 Sov. Phys. JETP 5 1174
[8] Aslamazov L G and Larkin A I 1968 Sov. Solid State Phys. 10 875
[9] Aslamazov L G and Larkin A I 1968 Phys. Lett. A 26 238
[10] Glover R E 1967 Phys. Lett. A 25 542
[11] Fisher D S, Fisher M A and Huse D 1991 Phys. Rev. B 43 130
[12] Zeldov E, Majer D, Konczykowski M, Geshkenbein V B, Vinokur V M and Shtrikman H 1995 Nature 375 373
[13] Willemin M, Schilling A, Keller H, Rossel C, Hofer J, Welp U, Kwok W K, Olsson R J and Crabtree G W 1998 Phys. Rev. Lett. 81 4236
[14] Nishizaki T, Shibata K, Sasaki T and Kobayashi N 2000 Physica C 341-348 957
[15] Beidenkopf H, Avraham N, Myasoedov Y, Shtrikman H, Zeldov E, Rosenstein B, Brandt E H and Tamegai T 2005 Phys. Rev. Lett. 95 257004
[16] Beidenkopf H, Verdene T, Myasoedov Y, Shtrikman H, Zeldov E, Rosenstein B, Li D and Tamegai T 2007 Phys. Rev. Lett. 98 167004
[17] Schilling A, Fisher R A, Phillips N E, Welp U, Dasgupta D, Kwok W K and Crabtree G W 1996 Nature 382 791
[18] Schilling A, Fisher R A, Phillips N E, Welp U, Kwok W K and Crabtree G W 1997 Phys. Rev. Lett. 78 4833
[19] Bouquet F, Marcenat C, Steep E, Calemczuk R, Kwok W K, Welp U, Crabtree G W, Fisher R A, Phillips, N E and Schilling A 2001 Nature 411 448
[20] Lortz R, Lin F, Musolino N, Wang Y, Junod A, Rosenstein B and Toyota N 2006 Phys. Rev. B 74 104502
[21] Lortz R, Musolino N, Wang Y, Junod A and Toyota N 2007 Phys. Rev. B 75 094503
[22] Jiang X, Li D and Rosenstein B 2014 Phys. Rev. B 89 064507
[23] Li D and Rosenstein B Z1987 Phys. Rev. D 35 1835
[30] Li D and Rosenstein B 2010 Rev. Mod. Phys. 82 109
[31] Junod A, Erb A and Renner C 1999 Physica C 317-318 333
[32] Triscone G, Junod A and Gladyshevskii R E 1996 Physica C 264 233
[33] Junod A, Wang K Q, Tsukamoto T, Triscone G, Revaz B, Walker E and Muller J 1994 Physica C 229 209
[34] Poole C P Jr, Farach H A, Creswick R J and Prozorov R 2007 Superconductivity, 2nd edn. (Elsevier)
[35] Tinh B D, Li D and Rosenstein B 2010 Phys. Rev. B 81 224521
[1] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[2] Absence of magnetic order in dichloro [1,2-bis (diphenylphosphino) ethane] nickel2 + single crystal
Shuaiqi Ma(马帅奇), Linlin An(安琳琳), and Xiangde Zhu(朱相德). Chin. Phys. B, 2021, 30(5): 057501.
[3] Specific heat in superconductors
Hai-Hu Wen(闻海虎). Chin. Phys. B, 2020, 29(1): 017401.
[4] First principles study and comparison of vibrational and thermodynamic properties of XBi (X= In, Ga, B, Al)
Raheleh Pilevar Shahri, Arsalan Akhtar. Chin. Phys. B, 2017, 26(9): 093107.
[5] Fluctuating specific heat in two-band superconductors
Lei Qiao(乔雷), Cheng Chi(迟诚), Jiangfan Wang(王江帆). Chin. Phys. B, 2017, 26(11): 117401.
[6] Magnetocaloric and magnetic properties of La2NiMnO6 double perovskite
Masrour R, Jabar A. Chin. Phys. B, 2016, 25(8): 087502.
[7] Temperature-dependent specific heat of suspended platinum nanofilms at 80-380 K
Qin-Yi Li(李秦宜), Masahiro Narasaki(楢崎将弘), Koji Takahashi(高桥厚史), Tatsuya Ikuta(生田竜也), Takashi Nishiyama(西山贵史), Xing Zhang(张兴). Chin. Phys. B, 2016, 25(11): 114401.
[8] Effects of a finite number of particles on the thermodynamic properties of a harmonically trapped ideal charged Bose gas in a constant magnetic field
Duan-Liang Xiao(肖端亮), Meng-Yun Lai(赖梦云), Xiao-Yin Pan(潘孝胤). Chin. Phys. B, 2016, 25(1): 010307.
[9] Phase transition and critical behavior ofspin-orbital coupled spinel ZnV2O4
Li Wang(王理), Rong-juan Wang(王蓉娟), Yuan-yuan Zhu(朱媛媛), Zhi-hong Lu(卢志红),Rui Xiong(熊锐), Yong Liu(刘雍), Jing Shi(石兢). Chin. Phys. B, 2016, 25(1): 016802.
[10] Monte Carlo study of the magnetic properties of spin liquid compound NiGa2S4
Zhang Kai-Cheng (张开成), Li Yong-Feng (李永峰), Liu Yong (刘永), Chi Feng (迟锋). Chin. Phys. B, 2014, 23(5): 057501.
[11] Determining the thermophysical properties of Al-doped ZnO nanoparticles by the photoacoustic technique
T. A. El-Brolossy, O. Saber, S. S. Ibrahim. Chin. Phys. B, 2013, 22(7): 074401.
[12] Effects of anisotropy and magnetic fields on the specific heat of a quasi-two-dimensional Boltzmann gas in an elliptical parabolic quantum dot
Zhai Zhi-Yuan(翟智远), Li Yu-Qi(李玉奇) , and Pan Xiao-Yin(潘孝胤) . Chin. Phys. B, 2012, 21(7): 070506.
[13] Thermal properties of single-walled carbon nanotube crystal
Hu Li-Jun(胡丽君), Liu Ji(刘基), Liu Zheng(刘政), Qiu Cai-Yu(邱彩玉), Zhou Hai-Qing(周海青), and Sun Lian-Feng(孙连峰) . Chin. Phys. B, 2011, 20(9): 096101.
[14] Theoretical calculations of thermophysical properties of single-wall carbon nanotube bundles
Miao Ting-Ting (缪婷婷), Song Meng-Xuan (宋梦譞), Ma Wei-Gang (马维刚), Zhang Xing (张兴). Chin. Phys. B, 2011, 20(5): 056501.
[15] Glassy phase and thermodynamics for random field Ising model on spherical lattice in magnetic field
Khalid Bannora, Galal Ismail, and Wafaa Hassan. Chin. Phys. B, 2010, 19(10): 107501.
No Suggested Reading articles found!