Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 037106    DOI: 10.1088/1674-1056/19/3/037106
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-performance n-channel organic thin-film transistors based on the dual effects of heterojunction and surface modification

Cao Jin(曹进)a), Hong Fei(洪飞)a), Xing Fei-Fei(邢菲菲)b), Gu Wen(顾文)a), Guo Xin-An(郭新安)a), Zhang Hao(张浩)a), Wei Bin(魏斌)a), Zhang Jian-Hua(张建华)a), and Wang Jun(王军)a)
a Key Laboratory of Advanced Display and System Application (Shanghai University) and Special Display Technology (Hefei University of Technology), Ministry of Education, Shanghai 200072, China; b Chemistry Department, College of Sciences, Shanghai University, Shanghai 200444, China
Abstract  This paper presents two n-channel organic heterojunction transistors with modified insulator by using hexadecafluorophthalocyaninatocopper (F16CuPc)/copper phthalocyanine (CuPc) and F16CuPc/pentacene as the active layers. Compared with a single-layer device, it reports that an improved field-effect mobility and a 6-fold higher drain current are observed. The highest mobility of 0.081 cm2/(V.s) was obtained from F16CuPc/CuPc heterojunction devices. This result is attributed to the dual effects of the organic heterojunction and interface modification. Furthermore, for two heterojunction devices, the performance of the F16CuPc/CuPc-based transistor is better than that of F16CuPc/pentacene. This is attributed to the morphologic match of two organic components.
Keywords:  n-channel      heterojunction effect      surface modification  
Received:  29 May 2009      Revised:  10 June 2009      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  68.37.Ps (Atomic force microscopy (AFM))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~60806007), the Shanghai `Post-Qi-Ming-Xing Plan' for Young Scientists, China (Grant No.~07QA14023), and the Shanghai Committee of Science and Technology (Grant Nos.~08DZ1140702 and 08520511200).

Cite this article: 

Cao Jin(曹进), Hong Fei(洪飞), Xing Fei-Fei(邢菲菲), Gu Wen(顾文), Guo Xin-An(郭新安), Zhang Hao(张浩), Wei Bin(魏斌), Zhang Jian-Hua(张建华), and Wang Jun(王军) High-performance n-channel organic thin-film transistors based on the dual effects of heterojunction and surface modification 2010 Chin. Phys. B 19 037106

[1] Crone B, Dodabalapur A, Lin Y Y, Filas R W, Bao Z, Laduca A, Sarpeshkar R, Katz HE and Li W 2000 Nature 403 521
[2] Meijer E J, de Leeuw D M, Setayesh S, Veenendaal E van, Huisman B H, Blom P W M, Hummelen J C, Scherf U and Klapwijk T M 2003 Nat. Mater. 2 678
[3] Anthopoulos T D, Singh B, Marjanovic N, Sariciftci N S, MontaigneRamil A, Sitter H, Colle M and de Leeuw D M 2006 Appl. Phys.Lett. 89 213504
[4] Itaka K, Yamashiro M, Yamaguchi J, Haemori M, Yaginuma S, Matsumoto Y, Kondo M and Koinuma H 2006 Adv. Mater. 18 1713
[5] Tatemichi S, Ichikawa M, Koyama T and Taniguchi Y 2006 Appl.Phys. Lett. 89 112108
[6] Zhang X H and Kippelen B 2008 Appl. Phys. Lett. 93 133305
[7] Bao Z, Lovinger A J and Brown J 1998 J. Am. Chem. Soc. 120 207
[8] Ling M M and Bao Z 2006 Org. Electron. 6 568
[9] Yuan G C, Xu Z, Zhao S L, Zhang F J, Jiang W W, Song D D, Zhu H N, Li SY, Huang J Y, Huang H and Xu X R 2008 Chin. Phys. B 171887
[10] Bao Z, Lovinger A J and Dodabalapur A 1996 Appl. Phys. Lett. 69 3066
[11] Wang J, Yan X J, Xu Y X, Zhang J and Yan D H 2004 Appl. Phys.Lett. 85 5424
[12] Kobayashi S, Nishikawa T, Takenobu T, Mori S, Shimoda T, Mitani T, Shimotani H, Yoshimoto N, Ogawa S and Iwasa Y 2004 Nat. Mater. 3 317
[13] Chua L L, Zaumseil J, Chang J F, Ou E C W, Ho P K H, Sirringhaus Hand Friend R H 2005 Nature (London) 434 194
[14] Wang J, Wang H, Yan X J, Huang H C and Yan D H 2005 Appl.Phys. Lett. 87 093507
[15] Yan X J, Wang J, Wang H, Wang H and Yan D H 2006 Appl. Phys.Lett. 89 053510
[16] Jackson T N, Lin Y Y, Gundlach D J and Klauk H 1998 IEEE J.Sel. Top. Quantum Electron. 4 100
[17] Tao C L, Zhang X H, Dong M J, Liu Y Y, Sun S, Ou G P, Zhang F J and Zhang HL 2008 Chin. Phys. B 17 0281
[18] Zhu M, Liang G, Cui T and Varahramyan K 2003 Solid-StateElectron. 47 1855
[19] Wang H, Wang J, Huang H C, Yan X J and Yan D H 2006 Org.Electron. 7 369
[20] Yang C Y, Cheng S S, Ou C W, Chuang Y C, Wu M C, Dhananjay and Chu C W2008 J. Appl. Phys. 103 094519
[21] Peisert H, Knupfer M, Schwieger T, Auerhammer J M, Golden M S and Fink J2002 J. Appl. Phys. 91 4872
[22] Kim C, Facchetti A and Marks T J 2007 Adv. Mater. 19 2561
[1] Developing cold-resistant high-adhesive electronic substrate for WIMPs detectors at CDEX
Yuanyuan Liu(刘圆圆), Jianping Cheng(程建平), Pan Pang(庞盼), Bin Liao(廖斌), Bin Wu(吴彬), Minju Ying(英敏菊), Fengshou Zhang(张丰收), Lin Chen(陈琳), Shasha Lv(吕沙沙), Yandong Liu(刘言东), Tianxi Sun(孙天希). Chin. Phys. B, 2020, 29(4): 045203.
[2] Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite
Zi-Rui Jia(贾梓睿), Zhen-Guo Gao(高振国), Di Lan(兰笛), Yong-Hong Cheng(成永红), Guang-Lei Wu(吴广磊), Hong-Jing Wu(吴宏景). Chin. Phys. B, 2018, 27(11): 117806.
[3] Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays
Ren-Wu Zhou(周仁武), Ru-Sen Zhou(周儒森), Jin-Xing Zhuang(庄金星), Jiang-Wei Li(李江炜), Mao-Dong Chen(陈茂冬), Xian-Hui Zhang(张先徽), Dong-Ping Liu(刘东平), Kostya (Ken) Ostrikov, Si-Ze Yang(杨思泽). Chin. Phys. B, 2016, 25(4): 045202.
[4] Comparison of two absorption imaging methods to detect cold atoms in magnetic trap
Wang Yan (王妍), Hu Zhao-Hui (胡朝晖), Qi Lu (亓鲁). Chin. Phys. B, 2015, 24(2): 024203.
[5] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin (储鑫), Yu Jing (余靓), Hou Yang-Long (侯仰龙). Chin. Phys. B, 2015, 24(1): 014704.
[6] Model of hot-carrier induced degradation in ultra-deep sub-micrometer nMOSFET
Lei Xiao-Yi (雷晓艺), Liu Hong-Xia (刘红侠), Zhang Yue (张月), Ma Xiao-Hua (马晓华), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(5): 057305.
[7] Composite magnetic nanoparticles:Synthesis and cancer-related applications
Cai Ping (蔡苹), Chen Hong-Min (陈洪敏), Xie Jin (谢晋). Chin. Phys. B, 2014, 23(11): 117504.
[8] Dispersion relation and growth rate for a corrugated channel free-electron laser with a helical wiggler pump
A. Hasanbeigi, H. Mehdiank. Chin. Phys. B, 2013, 22(7): 075205.
[9] Three-dimensional simulation of long-wavelength free-electron lasers with helical wiggler and ion-channel guiding
F. Jafari Bahman, B. Maraghechi. Chin. Phys. B, 2013, 22(7): 074102.
[10] A facile way to fabricate aluminum sheet with superhydrophobic and self-cleaning properties
Yang Zhou (杨周), Wu Yi-Zhi (吴以治), Ye Yi-Fan (叶逸凡), Gong Mao-Gang (公茂刚), Xu Xiao-Liang (许小亮). Chin. Phys. B, 2012, 21(12): 126801.
[11] Gain calculation of a free-electron laser operating with a non-uniform ion-channel guide
A. Hasanbeigi, H. Mehdian, and S. Jafari . Chin. Phys. B, 2011, 20(9): 094103.
[12] Generation-channel interference of high-order harmonics of an anharmonic oscillator driven by bi-chrime laser fields and its mechanism
Wang Li-Ming(王黎明), Cai Jun(蔡俊), and Qiao Hao-Xue(乔豪学). Chin. Phys. B, 2011, 20(7): 073202.
[13] Synthesis and photoluminescence properties of Nd2O3 nanoparticles modified by sodium bis(2-ethylhexyl) sulfosuccinate
Ren Jian-Hua (任建华), Zhao Tong-Gang (赵同刚), Liu Jian-Hua (刘建华), Kong Juan (孔娟), He Jia-Xin (贺加欣), Guo Lin (郭林). Chin. Phys. B, 2008, 17(12): 4669-4672.
[14] “Cold” dispersion relation of corrugated waveguide filled with plasma immersed in a finite magnetic field
Li Wei (李伟), Wei Yan-Yu (魏彦玉), Xie Hong-Quan (谢鸿全), Liu Sheng-Gang (刘盛纲), Gong Ma-Li (巩马理). Chin. Phys. B, 2003, 12(5): 532-537.
[15] SURFACE CAPPING OF TiO2 COLLOIDAL NANOPARTICLES STUDIED BY FOURIER TRANSFORM RAMAN SPECTRA
Wang Xin (邓慧华), Lu Zu-hong (汪昕), Deng Hui-hua (郁清), Yu Tsing (毛海舫), Mao Hai-fang (铃木敏重), Suzuki Toshishige (陆祖宏). Chin. Phys. B, 2001, 10(13): 59-64.
No Suggested Reading articles found!