Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 033601    DOI: 10.1088/1674-1056/19/3/033601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Density functional theory study on Ni-doped MgnNi (= 1-7) clusters

Chen Xue-Feng(陈雪风)a), Zhang Yan(张岩)a), Qi Kai-Tian(齐凯天)a), Li Bing(李兵)a), Zhu Zheng-He(朱正和) b), and Sheng Yong(盛勇)a)†
a College of Material Science and Engineering, Sichuan University, Chengdu 610065, China; b Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  The possible geometrical and the electronic structures of small MgnNi (= 1-7) clusters are optimised by the density functional theory with a LANL2DZ basis set. The binding energy, the energy gap, the electron affinity, the dissociation energy and the second difference in energy are calculated and discussed. The properties of MgnNi clusters are also discussed when the number of Mg atom increases.
Keywords:  density functional theory      magnesium nickel clusters      structure of ground state  
Received:  08 July 2009      Revised:  16 September 2009      Accepted manuscript online: 
PACS:  61.46.Bc (Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10676022).

Cite this article: 

Chen Xue-Feng(陈雪风), Zhang Yan(张岩), Qi Kai-Tian(齐凯天), Li Bing(李兵), Zhu Zheng-He(朱正和), and Sheng Yong(盛勇) Density functional theory study on Ni-doped MgnNi (= 1-7) clusters 2010 Chin. Phys. B 19 033601

[1] Andrey L, Ilia A S, Andrey V S and Walter G2003 Phys. Rev. A 67 063203
[2] Kuznetsov V M, Kadyrov R I and Rudenskii G E 1998 J. Mater. Sci. Technol. 14 320
[3] Wang G H 2000 Progress in Physics 14 121(in Chinese)
[4] Brack M 1993 Rev. Mod. Phys. 65 677
[5] Xie Z, Ma Q M, Wang J, Liu Y and Li Y C 2007 Chin. Phys. 16 3637
[6] Bulgakov A V, Bobrenok O F and Kosyakov V I 2000 Chem. Phys. Lett. 19 320
[7] Ren Z Y, Hou R, Guo P, Gao J K, Du G H and Wen Z Y 2008 Chin. Phys. B17 2116
[8] Sarah D, Thomas V and Mortimer J 2002 Chem. Phys. 116 1536
[9] Chen Y H, Zhang C R and Ma J 2006 Acta Phys. Sin. 55 0171 (in Chinese)
[10] Sheng Y, Mao H P and Tu M S 2008 Acta Phys. Sin. 57 4153 (in Chinese)
[11] Imai Y and Watanale A 2006 J. Mater. Sci. 41 2435
[12] Imam M A 1999 J. Mater. Sci . 34 2655
[13] Lombardi J R and Davis B 2002 Chem. Rev. 102 2431
[14] Zhang Z, Hu W Y and Xiao S F 2006 Phys. Rev. B 73 125443
[15] Vijay Kumar and Roberto Car 1991 Phys. Rev. B 44 15
[16] Jasena P V, Gonzaleza E A and Brizuelaa G 2007 Int. J. Hydrogen Energy 32 4943
[17] Noreus D and Werner P E 1981 Mater. Res. Bull. 16 199
[18] Genossar J and Rudman P S J 1981 Phys. Chem. Solids 42 611
[19] Reily J J and Wiswall Jr R H 1968 Inorg. Cheistry 7 2254
[20] Broedersz C P, Gremaud R, Dam B and Griessen R 2008 Phys. Rew. B 77 024204
[21] Nor?us D and Werner P E 1982 Acta Chemica Scandinavica A 36 847
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!