Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 026601    DOI: 10.1088/1674-1056/19/2/026601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Atomic diffusion in annealed Cu/SiO2/Si (100) system prepared by magnetron sputtering

Cao Bo(曹博)a)b), Jia Yan-Hui(贾艳辉)a), Li Gong-Ping(李公平)a), and Chen Xi-Meng(陈熙萌) a)
a School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; b School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
Abstract  Cu thin films are deposited on p-type Si (100) substrates by magnetron sputtering at room temperature. The interface reaction and atomic diffusion of Cu/SiO2/Si (100) systems are studied by x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). Some significant results can be obtained. The onset temperature of interdiffusion for Cu/SiO2/Si(100) is 350 ℃. With the annealing temperature increasing, the interdiffusion becomes more apparent. The calculated diffusion activation energy is about 0.91 eV. For the Cu/SiO2/Si (100) systems copper silicides are not formed below an annealing temperature of 350 ℃. The formation of the copper silicides phase is observed when the annealing temperature arrives at 450 ℃.
Keywords:  diffusion      interface reaction      copper silicides  
Received:  07 October 2008      Revised:  04 August 2009      Accepted manuscript online: 
PACS:  66.30.Ny (Chemical interdiffusion; diffusion barriers)  
  81.15.Cd (Deposition by sputtering)  
  68.55.A- (Nucleation and growth)  
  82.65.+r (Surface and interface chemistry; heterogeneous catalysis at surfaces)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10375028).

Cite this article: 

Cao Bo(曹博), Jia Yan-Hui(贾艳辉), Li Gong-Ping(李公平), and Chen Xi-Meng(陈熙萌) Atomic diffusion in annealed Cu/SiO2/Si (100) system prepared by magnetron sputtering 2010 Chin. Phys. B 19 026601

[1] Barth J V, Costantini G and Kern K 2005 Nature 437 671
[2] Tsay J S, Fu T Y, Lin M H, Yang C S and Yao Y D 2006 Appl. Phys. Lett. 88 102506
[3] Wu Y, Xiang J, Yang C, Lu W and Lieber C M 2004 Nature 430 61
[4] Guo H, Zhang Y M and Zhang Y M 2006 Chin. Phys. 15 2142
[5] Cao Y R, Ma X H, Hao Y, Zhang Y, Yu L, Zhu Z W and Chen H F 2007 Chin. Phys. 16 1140
[6] Guo H, Zhang Y M, Qiao D Y, Sun L and Zhang Y M 2007 Chin. Phys. 16 1753
[7] Ahn C H, Rabe K M and Triscone J M 2004 Science 23 488
[8] Chang C A 1990 J. Appl. Phys. 67 566
[9] Soltz L and D'Heurle F M 1990 Thin Solid Films 189 269
[10] Imahori J, Oku T and Murakami M 1997 Thin Solid Films 301 142
[11] Song S X, Liu Y Z, Mao D L, Ling H Q and Li M 2005 Thin Solid Films 476 142
[12] Moriyama M, Kawazoe T, Tanaka M and Murakami M 2002 Thin Solid Films 416 136
[13] Liu Y Z, Song S X, Mao D L, Ling H Q and Li M 2004 Microelectron. Eng. 75309
[14] Kuchuk A V, Ciosek J, Piotrowska A, Kaminska E, Wawro A, Lytvyn O S, Nowicki L and Ratajczak R 2004 Vacuum 74 195
[15] Benouattas N, Mosser A, Raiser D, Faerber J and Bouabellou A 2000 Appl. Surf. Sci. 15 3 79
[16] Cao B, Bao L M, Li G P and He S H 2006 Acta Phys. Sin. 55 6550 (in Chinese)
[17] Takaoka G H, Fujita K, Ishikawa J and Takagi T 1989 Nucl. Instr. Meth. B 37/38 882
[18] Sekar K, Satyam P V, Kuri G, Mahapatra D P and Dev B N 1993 Nucl. Instr. Meth. B 7 3 63
[19] Poate J M, Turner P A and Debonte W J 1975 J. Appl. Phys. 46 4275
[20] Stolt L and Dheurle F M 1990 Thin Solid Films 189 269
[21] Chromik R R, Neils W K and Cotts E J 1999 J. Appl. Phys. 86 4273
[22] Becht J G M, Van Loo F J J and Metselaar R 1988 Reactivity of Solids 6 45
[23] Hong S Q, Comrie C M, Russel S W and Mayer J W 1991 J. Appl. Phys. 70 3655
[24] Chang C A 1989 J. Appl. Phys. 66 1163
[1] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[2] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[3] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[4] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[5] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[6] Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(4): 044704.
[7] Self-adaptive behavior of nunchakus-like tracer induced by active Brownian particles
Yi-Qi Xia(夏益祺), Guo-Qiang Feng(冯国强), and Zhuang-Lin Shen(谌庄琳). Chin. Phys. B, 2022, 31(4): 040204.
[8] Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(3): 036401.
[9] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[10] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[11] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[12] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[13] A new simplified ordered upwind method for calculating quasi-potential
Qing Yu(虞晴) and Xianbin Liu(刘先斌). Chin. Phys. B, 2022, 31(1): 010502.
[14] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[15] Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇). Chin. Phys. B, 2021, 30(9): 098201.
No Suggested Reading articles found!