Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 023601    DOI: 10.1088/1674-1056/19/2/023601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Shape of the geometrically active atomic states of carbon

Xiong Zhuang(熊庄)a)† and Bacalis N.~C. b)
a AMS Research Center, Southeast University, Nanjing 210096, China; b Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vasileos Constantinou 48, Athens, Greece 11635
Abstract  We have developed a computer code for ab initio the variational configuration interaction calculation of the electronic structure of atoms via variationally optimized Lagurre type orbitals, treating the orbital effective charges as variational parameters. Excited states of the same symmetry, in order to avoid the inherent restrictions of the standard method of Hylleraas--Unheim and MacDonald, are computed variationally by minimizing the recently developed minimization functionals for excited states. By computing, at the minimum, the one-electron density and the probability distribution of the two-electron angle, and the most probable two-electron angle, we investigate the atomic states of the carbon atom. We show that, without resorting to the (admittedly unproven) concept of hybridization, as an intrinsic property of the atomic wave function, the most probable value of the two-electron angle is around the known angles of carbon bonding, i.e. either 109$^\circ$ or 120$^\circ$ or 180$^\circ$, depending on each low-lying state of the bare carbon atom.
Keywords:  carbon      hybridization      excited states      variational principle  
Received:  12 June 2009      Revised:  05 August 2009      Accepted manuscript online: 
PACS:  31.15.A- (Ab initio calculations)  
  31.15.xt (Variational techniques)  
  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
Fund: Project partially supported by the National High Technology Research and Development Program of China (Grant No.~2004AA306H10) and the operational program ``Competitiveness'' of the Greek General Secretariat of Research and Technology (Grant No.~04EP111/ENTEP-2004).

Cite this article: 

Xiong Zhuang(熊庄) and Bacalis N.~C. Shape of the geometrically active atomic states of carbon 2010 Chin. Phys. B 19 023601

[1] Mulliken R S 1965 J. Chem. Phys. 4 3 S2
[2] Nicolaides C A and Komninos Y 1998 Int. J. Quantum Chem. 67 321
[3] Xiong Z, Velgakis M I and Bacalis N C 2005 Int. J. Quantum Chem. 104 418
[4] Xiong Z and Bacalis N C 2006 Chin. Phys. 15 992
[5] Fischer F C 1997 Computational Atomic Structure} (Bristol: Institute of PhysicsPublishing)
[6] Bacalis N C, Xiong Z and Karaoulanis D 2008 J. Comput. Meth. Sci. Eng. 8 277
[Bacalis N C 2008 arXiv:0801.3673
[7] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 NumericalRecipes in FORTRAN} 2nd ed. (London: Cambridge University Press)
[8] McWeeny R 1989 Methods of Molecular Quantum Mechanics2nd ed. (SanDiego: Academic)
[9] Schaefer H F and Harris F E 1968 J. Comput. Phys. 3 217
[10] Archbold J W 1961 Algebra} (London: Pitman Publishing)
[11] Tinkham M 1964 Group Theory and Quantum Mechanics(New York: McGraw-HillBook Company)
[12] Ralchenko Y, Kramida A E, Reader J and NIST ASD Team 2008 NIST Atomic Spectra Database}(version 3.1.5), (online). Available:http://physics.nist.gov/asd3, National Institute of Standards andTechnology, Gaithersburg, MD (USA).
[13] Luo Y R 2003 Handbook of BondDissociation Energies in Organic Compounds(Boca Raton: CRC Press)
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[6] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[7] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[8] Effect of Cu doping on the secondary electron yield of carbon films on Ag-plated aluminum alloy
Tiancun Hu(胡天存), Shukai Zhu(朱淑凯), Yanan Zhao(赵亚楠), Xuan Sun(孙璇), Jing Yang(杨晶), Yun He(何鋆), Xinbo Wang(王新波), Chunjiang Bai(白春江), He Bai(白鹤), Huan Wei(魏焕), Meng Cao(曹猛), Zhongqiang Hu(胡忠强), Ming Liu(刘明), and Wanzhao Cui(崔万照). Chin. Phys. B, 2022, 31(4): 047901.
[9] Geometric quantities of lower doubly excited bound states of helium
Chengdong Zhou(周成栋), Yuewu Yu(余岳武), Sanjiang Yang(杨三江), and Haoxue Qiao(乔豪学). Chin. Phys. B, 2022, 31(3): 030301.
[10] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[11] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[12] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[13] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[14] One-dimensional sp carbon: Synthesis, properties, and modifications
Chao-Fan Lv(吕超凡), Xi-Gui Yang(杨西贵), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2022, 31(12): 128103.
[15] Chemical bonding in representative astrophysically relevant neutral, cation, and anion HCnH chains
Ioan Baldea. Chin. Phys. B, 2022, 31(12): 123101.
No Suggested Reading articles found!