Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 023301    DOI: 10.1088/1674-1056/19/2/023301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical study of the influence of intense femtosecond laser field on the evolution of the wave packet and the population of NaRb molecule

Ma Ning(马宁), Wang Mei-Shan(王美山), Yang Chuan-Lu(杨传路), Ma Xiao-Guang(马晓光), and Wang De-Hua(王德华)
School of Physics and Electronic Engineering, Ludong University, Yantai 264025, China
Abstract  Employing the two-state model and the time-dependent wave packet method, we have investigated the influences of the parameters of the intense femtosecond laser field on the evolution of the wave packet, as well as the population of ground and double-minimum electronic states of the NaRb molecule. For the different laser wavelengths, the evolution of the wave packet of $6{ }^1\Sigma ^ +$  state with time and internuclear distance is different, and the different laser intensity brings different influences on the population of the electronic states of the NaRb molecule. One can control the evolutions of wave packet and the population in each state by varying the laser parameters appropriately, which will be a benefit for the light manipulation of atomic and molecular processes.
Keywords:  intense femtosecond laser field      time-dependent wave packet method      wave packet      population  
Received:  13 July 2009      Revised:  11 August 2009      Accepted manuscript online: 
PACS:  33.80.Be (Level crossing and optical pumping)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~10674114 and 10604045).

Cite this article: 

Ma Ning(马宁), Wang Mei-Shan(王美山), Yang Chuan-Lu(杨传路), Ma Xiao-Guang(马晓光), and Wang De-Hua(王德华) Theoretical study of the influence of intense femtosecond laser field on the evolution of the wave packet and the population of NaRb molecule 2010 Chin. Phys. B 19 023301

[1] Wunderlich C, Kobler E, Figger H and H?nsch T W 1997 Phys. Rev. Lett. 78 2333
[2] Walker B C, Tóth C, Fittinghoff D N, Guo T, Kim D E, Rose-Petruck C,Squier J A, Yamakawa K, Wilson K R and Barty C P J 1999 Opt. Express 5 196
[3] Garraway B M and Suominen K A 1998 Phys. Rev. Lett. 80 932
[4] Pukhov A 2003 Rep. Prog. Phys. 66 47
[5] Zavriyev A, Bucksbaum P H, Muller H G and Schumacher D W 1990 Phys. Rev. A 425500
[6] Giusti-Suzor A, He X, Atabek O and Mies F H 1990 Phys. Rev. Lett. 64 515
[7] Grasbon F, Paulus G G, Walther H, Villoresi P, Sansone G, Stagira S,Nisoli M and De Silvestri S 2003 Phys. Rev. Lett. 91 173003
[8] Frasinski L J, Posthumus J H, Plumridge J, Coding K, Taday P F andLangley A J 1999 Phys. Rev. Lett. 8 3 3625
[9] Bucksbaum P H, Zavriyev A, Muller H G and Schumacher D W 1990 Phys. Rev. Lett. 64 1883
[10] Sun Z G, Liu H P, Lou N Q and Cong S L 2003 Chem. Phys. Lett. 369 374
[11] Stapelfeldt H, Sakai H, Constant E and Corkum P B 1997 Phys. Rev.Lett. 792787
[12] Magnier S, Persico M and Rahman N 1999 Phys. Rev. Lett. 8 3 2159
[13] Meier C and Engel V 1994 J. Chem. Phys. 101 2673
[14] Assion A, Baumert T, Geisler M, Seyfried V and Gerber G 1998 Eur. Phys. J. D4 145
[15] Yu J, Wang S M, Yuan K J and Cong S L 2006 Chin. Phys. 15 1996
[16] Korek M, Allouche A R, Kobeissi M, Chaalan A, Dagher M, Fakherddin Kand Aubert-Frécon M 2000 Chem. Phys. 2 56 1
[17] Docenko O, Tamanis M, Ferber R, Pashov A, Kn?ckel H and Tiemann E2004 Phys. Rev. A 69 042503
[18] Kortyka P, Jastrzebski W and Kowalczyk P 2005 Chem. Phys. Lett. 404 323
[19] Feit M D, Fleck Jr J A and Sreiger A 1982 J. Comput. Phys. 47 412
[20] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[21] Xie T X, Zhang Y, Zhao M Y and Han K L 2003 Phys. Chem. Chem. Phys. 5 2034
[22] Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001
[23] Knight P L and Milonni P W 1980 Phys. Rep. 66 21
[24] Meng Q T, Yang G H and Han K L 2003 Int. J. Quantum Chem. 95 30
[25] Meng Q T, Liu X G, Zhang Q G and Han K L 2005 Chem. Phys. 316 93
[26] Brown A, Meath W J and Tran P 2000 Phys. Rev. A 63 013403
[1] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[2] Measuring stellar populations, dust attenuation and ionized gas at kpc scales in 10010 nearby galaxies using the integral field spectroscopy from MaNGA
Niu Li(李牛) and Cheng Li(李成). Chin. Phys. B, 2023, 32(3): 039801.
[3] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[4] Advantage of populous countries in the trends of innovation efficiency
Dan-Dan Hu(胡淡淡), Xue-Jin Fang(方学进), and Xiao-Pu Han(韩筱璞). Chin. Phys. B, 2022, 31(6): 068903.
[5] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[6] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[7] Fast qubit initialization in a superconducting circuit
Tianqi Huang(黄天棋), Wen Zheng(郑文), Shuqing Song(宋树清), Yuqian Dong(董煜倩), Xiaopei Yang(杨晓沛), Zhikun Han(韩志坤), Dong Lan(兰栋), and Xinsheng Tan(谭新生). Chin. Phys. B, 2021, 30(7): 070310.
[8] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[9] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
[10] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[11] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[12] Charge-state populations for the neon-XFEL system
Ping Deng(邓萍), Gang Jiang(蒋刚). Chin. Phys. B, 2019, 28(6): 063203.
[13] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[14] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[15] Dynamical control of population and entanglement for open Λ-type atoms by engineering the environment
Xiao-Lan Wang(王晓岚), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2019, 28(3): 030301.
No Suggested Reading articles found!