Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 117310    DOI: 10.1088/1674-1056/19/11/117310
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tunable surface-plasmon-resonance wavelength of silver island films

Wang Ji-Fei(王继飞)a), Li Hong-Jian(李宏建) a)b)†, Zhou Zi-You(周子游)a), Li Xue-Yong(李雪勇)b), Liu Ju(刘菊)a), and Yang Hai-Yan(杨海艳)a)
a College of Physics Science and Technology, Central South University, Changsha 410083, China; b School of Materials Science and Engineering, Central South University, Changsha 410083, China
Abstract  This paper experimentally and theoretically investigates the effect of the underlayer medium on tuning of the surface plasmon resonance (SPR) wavelength of silver island films, and the effect of substrate temperature on the morphologies and optical properties of the films. From the absorption spectra of single Ag with various thickness and overcoated (Ag/TiO2) films deposited on glass substrates at various substrate temperatures by RF magnetron sputtering, we demonstrate that the surface plasmon resonance wavelength can be made tunable by changing the underlayer medium, the thickness of metal layer and the substrate temperature. By varying substrate temperatures, the interparticle coupling effects on plasmon resonances of nanosilver particles enhance as the spacing between the particles reduces. When the substrate temperature is up to 500 ℃, the absorption peak decreases sharply and shifts to shorter wavelength side due to the severe coalescence between silver islands in the film.
Keywords:  Ag/TiO2 island thin film      surface plasmons      absorption spectrum      substrate temperature  
Received:  16 May 2010      Revised:  23 June 2010      Accepted manuscript online: 
PACS:  68.55.-a (Thin film structure and morphology)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.66.Bz (Metals and metallic alloys)  
  81.15.Cd (Deposition by sputtering)  
Fund: Project supported by the Distinguished Youth Foundation of Hunan Province, China (Grant No. 03JJY1008), the Science Foundation for Post-doctorate of China, (Grant No. 2004035083), and the Natural Science Foundation of Hunan Province, China (Grant No. 06JJ2034).

Cite this article: 

Wang Ji-Fei(王继飞), Li Hong-Jian(李宏建), Zhou Zi-You(周子游), Li Xue-Yong(李雪勇), Liu Ju(刘菊), and Yang Hai-Yan(杨海艳) Tunable surface-plasmon-resonance wavelength of silver island films 2010 Chin. Phys. B 19 117310

[1] Campion A and Kambhampati P 1998 Chem. Soc. Rev. 27 241
[2] Sambles J R, Bradbery G W and Yang F Z 1991 Contemp. Phys. 32 173
[3] Schaadt D M, Feng B and Yu E T 2005 Appl. Phys. Lett. 86 063106
[4] Derkacs D, Lim S H, Matheu P, Mar W and Yu E T 2006 Appl. Phys. Lett. 89 093103
[5] Westphalen M, Kreibig U, Rostalski J, Luth H and Meissner D 2000 Sol. Energy Mater. Sol. Cells 61 97
[6] Rand P B, Peumans P and Forrest S R 2004 J. Appl. Phys. 96 75197526
[7] Nie S and Emory S R 1997 Science 275 1102
[8] Antione R, Pellarin M, Palpant B, Broyer M, Prevel B, Galleto P, Brevet P F and Girault H H 1998 J. Appl. Phys. 84 4532
[9] Caseri W and Macromol 2000 Rapid Commun. 21 705
[10] Quinten M 2001 Appl. Phys. B: Lasers Opt. 73 317
[11] Haes A J and Van Duyne R P 2002 Am. J. Chem. Soc. 124 10596
[12] Brandl D W, Mirin N A and Nordlander P 2006 J. Phys. Chem. B 110 1230212310
[13] Rechberger W, Hohenau A and Leitner A 2003 Opt. Commun. 202 137141
[14] Zhao J, Wang A, Green M A and Ferrazza F 1998 Appl. Phys. Lett. 73 14
[15] Xu G, Huang C M, Liang Q, Tazawa M and Jin P 2009 Appl. Phys. A 94 525530
[16] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
[17] Huang Q, Zhang X D, Wang H, Xiong S Z, Geng W D, Geng X H and Zhao Y 2010 Chin. Phys. B 19 047304
[18] Xu G, Huang C M, Tazawa Ma, Jin P and Chen D M 2008 J. Appl. Phys. 104 053102
[19] Malinsky M D, Kelly K L, Schatz G C and Van Duyne R P 2001 J. Phys. Chem. B 105 2343
[20] Granqvist C G and Hunderi O 1977 Phys. Rev. B 16 3513
[21] Guo Q L and Goodman D W 2001 Chin. Phys. 10 S80
[22] Richards B S, Richards S R, Boreland M B and Jamieson D N 2004 J. Vac. Sci. Technol. A 22 339348
[23] Hovel H J 1978 J. Electrochem. Soc. 125 6
[24] Su K H, Wei Q H, Zhang X, Mock J J, Smith D R and Schultz S 2003 Nano Lett. 3 1087
[25] Heger P, Stenzel O and Kaiser N 2004 Proc. SPIE 21 5250
[26] Singer R R, Leitner A and Aussenegg F R 1995 J. Opt. Soc. Am. B 12 22
[27] Sancho-Parramon J, Bosch S, Abdolvand A, Podlipensky A, Seifert G and Graener H 2005 Proc. SPIE. 556 5963
[28] Dakka A, Lafait J, Sella C, Berthier S, Abd-Lefdil M, Martin J C and Maaza M 2000 Appl. Opt. 39 27452753
[29] Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin: Springer)
[30] Marton J P and Lemon J R 1971 Phys. Rev. B 4 271
[31] Xu G, Tazawa M, Jin P and Nakao S 2005 Appl. Phys. A 80 15351540 endfootnotesize
[1] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[2] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[3] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[4] First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia
Zi Li(李孜), Wei-Jie Li(李伟节), Cong Wang(王聪), Dafang Li(李大芳), Wei Kang(康炜), Xian-Tu He(贺贤土), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(5): 057102.
[5] X-ray absorption investigation of the site occupancies of the copper element in nominal Cu3Zn(OH)6FBr
Ruitang Wang(王瑞塘), Xiaoting Li(李效亭), Xin Han(韩鑫), Jiaqi Lin(林佳琪), Yong Wang(王勇), Tian Qian(钱天), Hong Ding(丁洪), Youguo Shi(石友国), and Xuerong Liu(柳学榕). Chin. Phys. B, 2021, 30(4): 046102.
[6] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[7] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[8] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[9] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[10] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[11] Tunable graphene-based mid-infrared band-pass planar filter and its application
Somayyeh Asgari, Hossein Rajabloo, Nosrat Granpayeh, Homayoon Oraizi. Chin. Phys. B, 2018, 27(8): 084212.
[12] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[13] Highly stable two-dimensional graphene oxide: Electronic properties of its periodic structure and optical properties of its nanostructures
Qin Zhang(张琴), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(2): 027301.
[14] Tunable edge bands and optical properties in black phosphorus nanoribbons under electric field
Hong Liu(刘红). Chin. Phys. B, 2018, 27(12): 127301.
[15] Absorption spectra and isotope shifts of the (2, 0), (3, 1), and (8, 5) bands of the A2Πu–X2g+ system of 15N2+ in near infrared
Jia Ye(叶佳), Hailing Wang(汪海玲), Lunhua Deng(邓伦华). Chin. Phys. B, 2017, 26(10): 103102.
No Suggested Reading articles found!