CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
X-ray absorption investigation of the site occupancies of the copper element in nominal Cu3Zn(OH)6FBr |
Ruitang Wang(王瑞塘)1,2, Xiaoting Li(李效亭)3, Xin Han(韩鑫)1,2, Jiaqi Lin(林佳琪)1,2, Yong Wang(王勇)4, Tian Qian(钱天)1,5, Hong Ding(丁洪)1,5, Youguo Shi(石友国)1,2, and Xuerong Liu(柳学榕)3,† |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 4 Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; 5 Songshan Lake Materials Laboratory, Dongguan 250100, China |
|
|
Abstract With Zn substitution to the three-dimensional antiferromagnetically ordered barlowite Cu4(OH)6FBr, Cu3Zn(OH)6FBr shows no magnetic phase transition down to 50 mK, and the system is suggested to be a two-dimensional kagomé quantum spin liquid [Chin. Phys. Lett. 34 077502 (2017)]. A key issue to identify such phase diagram is the exact chemical formula of the substituted compound. With Cu L-edge x-ray absorption spectrum (XAS) combined with the MultiX XAS calculations, we evaluate the Cu concentration in a nominal Cu3Zn(OH)6FBr sample. Our results show that although the Cu concentration is 2.80, close to the expected value, there is 34% residual Cu occupation in intersite layers between kagomé layers. Thus the Zn substitution of the intersite layers is not complete, and likely it intrudes the kagomé layers.
|
Received: 30 December 2020
Revised: 22 January 2021
Accepted manuscript online: 28 January 2021
|
PACS:
|
61.05.cj
|
(X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)
|
|
75.10.Kt
|
(Quantum spin liquids, valence bond phases and related phenomena)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
61.50.Nw
|
(Crystal stoichiometry)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11934017 and 11774399), the Key Research and Development Program of China (Grant No. 2016YFA0401000), the Chinese Academy of Sciences (Grant No. 112111KYSB20170059), and the K. C. Wong Education Foundation (Grant No. GJTD-2018-01). |
Corresponding Authors:
†Corresponding author. E-mail: liuxr@shanghaitech.edu.cn
|
Cite this article:
Ruitang Wang(王瑞塘), Xiaoting Li(李效亭), Xin Han(韩鑫), Jiaqi Lin(林佳琪), Yong Wang(王勇), Tian Qian(钱天), Hong Ding(丁洪), Youguo Shi(石友国), and Xuerong Liu(柳学榕) X-ray absorption investigation of the site occupancies of the copper element in nominal Cu3Zn(OH)6FBr 2021 Chin. Phys. B 30 046102
|
1 Feng Z, Li Z, Meng X, Yi W, Wei Y, Zhang J, Wang Y C, Jiang W, Liu Z, Li S Y, Liu F, Luo J L, Li S L, Zheng G Q, Meng Z Y, Mei J W and Shi Y G 2017 Chin. Phys. Lett. 34 077502 2 Anderson P W 1987 Science 235 1196 3 Balents L 2010 Nature 464 199 4 Kitaev A Y 2003 Ann. Phys. 303 2 5 Liu X, Berlijn T, Yin W G, Ku W, Tsvelik A, Kim Y J, Gretarsson H, Singh Y, Gegenwart P and Hill J P 2011 Phys. Rev. B 83 220403(R) 6 Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R and Senthil T 2020 Science 367 eaay0668 7 Ran Y, Hermele M, Lee P A and Wen X G 2007 Phys. Rev. Lett. 98 117205 8 Lawler M J, Paramekanti A, Kim Y B and Balents L 2008 Phys. Rev. Lett. 101 197202 9 Sachdev S 1992 Phys. Rev. B 45 12377 10 Norman M R 2016 Rev. Mod. Phys. 88 041002 11 Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98 107204 12 Mendels P, Bert F, de Vries M A, Olariu A, Harrison A, Duc F, Trombe J C, Lord J S, Amato A and Baines C 2007 Phys. Rev. Lett. 98 077204 13 Zorko A, Nellutla S, J van Tol, Brunel L C, Bert F, Duc F, Trombe J C, M A de Vries, Harrison A and Mendels P 2008 Phys. Rev. Lett. 101 026405 14 Imai T, Nytko E A, Bartlett B M, Shores M P and Nocera D G 2008 Phys. Rev. Lett. 100 077203 15 Fu M, Imai T, Han T H and Lee Y S 2015 Science 350 655 16 Elliot P and Cooper M 2010 Mineral. Mag. 74 797 17 Jeschke H O, Salvat-Pujol F, Gati E, Hoang N H, Wolf B, Lang M, Schlueter J A and Valent R 2015 Phys. Rev. B 92 094417 18 Liu Z, Zou X, Mei J W and Liu F 2015 Phys. Rev. B 92 220102 19 Smaha R W, He W, Sheckelton J P, Wen J and Lee Y S 2018 J. Solid State Chem. 268 123 20 Freedman D E, Han T H, Prodi A, Müller P, Huang Q Z, Chen Y S, Webb S M, Lee Y S, McQueen T M and Nocera D G 2010 J. Am. Chem. Soc. 132 16185 21 Smaha R W, Boukahil I, Titus C J, Jiang J M, Sheckelton J P, He W, Wen J, Vinson J, Wang S G, Chen Y S, Teat S J, Devereaux T P, Pemmaraju C D and Lee Y S 2020 Phys. Rev. Materials 4 124406 22 Shores M P, Nytko E A, Bartlett B M and Nocera D G 2005 J. Am. Chem. Soc. 127 13462 23 Han T H, Helton J S, Chu S Y, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406 24 Han T H, Helton J S, Chu S, Prodi A, Singh D K, Mazzoli C, Müller P, Nocera D G and Lee Y S 2011 Phys. Rev. B 83 100402 25 Asaba T, Han T H, Lawson B J, Yu F, Tinsman C, Xiang Z, Li G, Lee Y S and Li L 2014 Phys. Rev. B 90 064417 26 Han T H, Norman M R, Wen J J, Rodriguez-Rivera J A, Helton J S, Broholm C and Lee Y S 2016 Phys. Rev. B 94 060409 27 Olariu A, Mendels P, Bert F, Duc F, Trombe J C, M A de Vries and Harrison A 2008 Phys. Rev. Lett. 100 087202 28 Feng Z, Wei Y, Liu R, Yan D, Wang Y C, Luo J L, Senyshyn A, Cruz C, Yi W, Mei J W, Meng Z Y, Shi Y and Li S L 2018 Phys. Rev. B 98 155127 29 Smaha R W, He W, Jiang J M, Wen J J, Jiang Y F, Sheckelton J P, Titus C J, Wang S G, Chen Y S, Teat S J, Aczel A A, Zhao Y, Xu G, Lynn J W, Jiang H C and Lee Y S 2020 npj Quantum Mater. 5 23 30 Tustain K, Ward-O'Brien B, Bert F, Han T H, Luetkens H, Lancaster T, Huddart B M, Baker P J and Clark L 2020 npj Quantum Mater. 5 74 31 Han T H, Singleton J and Schlueter J A 2014 Phys. Rev. Lett. 113 227203 32 Lee H C 2018 Appl. Phys. Rev. 5 011108 33 Frankel R S and Aitken D W 1970 Applied Spectroscopy 24 557 34 Cromer D T and Mann J B 1968 Acta Crystallogr. A 24 321 35 Fink J, Heinzerling M, Scheerer B, Speier W, Hillebrecht F U, Fuggle J C, Zaanen J and Sawatzky G A 1985 Phys. Rev. B 32 4899 36 Uldry A, Vernay F and Delley B 2012 Phys. Rev. B 85 125133 37 de Groot F and Kotani A2008 Core Level Spectroscopy of Solids 38 Meyers D, Mukherjee S, Cheng J G, Middey S, Zhou J S, Goodenough J B, Gray B A, Freeland J W, Saha-Dasgupta T and Chakhalian J 2013 Sci. Rep. 3 1834 39 Huang S W, Wray L A, Jeng H T, Tra V T, Lee J M, Langner M C, Chen J M, Roy S, Chu Y H, Schoenlein R W, Chuang Y D and Lin J Y 2015 Sci. Rep. 5 16690 40 de Groot F M F 1995 Physica B 208-209 15 41 Als-Nielsen J and McMorrow D 2001 Elements of Modern X-ray Physics (New York: John Wiley and Sons) p. 186 42 Haverkort M W, Zwierzycki M and Andersen O K 2012 Phys. Rev. B 85 165113 43 Magnuson M, Schmitt T, Strocov V, Schlappa J, Kalabukhov A S and Duda L C 2014 Sci. Rep. 4 7017 45 Lee S H, Kikuchi H, Qiu Y, Lake B, Huang Q, Habicht K and Kiefer K 2007 Nature Mater. 6 853 46 Bert F, Nakamae S, Ladieu F, L'H\ote D, Bonville P, Duc F, Trombe J C and Mendels P 2007 Phys. Rev. B 76 132411 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|