|
|
Thermal entanglement in molecular spin rings |
Hou Jing-Min(侯净敏)†, Du Long(杜龙), Ding Jia-Yan(丁伽焱), and Zhang Wen-Xin(张文新) |
Department of Physics, Southeast University, Nanjing 211189, China |
|
|
Abstract The thermal entanglement in the triangular molecular spin ring with Dzyaloshinskii–Moriya interaction is studied. The concurrences of arbitrary two spins of the triangular molecular spin ring for various cases are evaluated. The tendency of the concurrence with Dzyaloshinskii–Moriya interaction and temperature is analysed and discussed. We note that the concurrence arrives at its maximum in the regime with the large Dzyaloshinskii–Moriya interaction and low temperature, and gradually decreases to zero with the increase of temperature. The concurrence has different features for the ferromagnetic and antiferromagnetic cases. For completeness, we also numerically calculate the concurrence of spin rings with N>3 spins and analyse their behaviours.
|
Received: 06 September 2009
Revised: 06 July 2010
Accepted manuscript online:
|
PACS:
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
Fund: Project supported by the Teaching and Research Foundation for the Outstanding Young Faculty of Southeast University, China. |
Cite this article:
Hou Jing-Min(侯净敏), Du Long(杜龙), Ding Jia-Yan(丁伽焱), and Zhang Wen-Xin(张文新) Thermal entanglement in molecular spin rings 2010 Chin. Phys. B 19 110313
|
[1] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[2] |
Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
|
[3] |
Bennett C H, DiVincenzo D, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
|
[4] |
Bennett C H, Bernstein H, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
|
[5] |
Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
|
[6] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[7] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[8] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. bf 69 2881
|
[9] |
Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[10] |
Deutsch D 1985 Proc. R. Soc. London Ser. A 400 97
|
[11] |
Shor P W 1995 Phys. Rev. A 52 R2493
|
[12] |
Lambert N, Emary C and Brandes T 2004 Phys. Rev. Lett. 92 073602
|
[13] |
Vedral V 2004 New J. Phys. 6 102
|
[14] |
D"ur W, Hartmann L, Hein M, Lewenstein M and Briegel H J 2005 Phys. Rev. Lett. 94 097203
|
[15] |
White S R 1992 Phys. Rev. Lett. 69 2863
|
[16] |
Vidal G 2003 Phys. Rev. Lett. 91 147902
|
[17] |
Hao X and Zhu S 2007 Phys. Lett. A 366 206
|
[18] |
Osterloh A, Amico L, Falci G and Fazio R 2002 it Nature 416 608
|
[19] |
Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
|
[20] |
Osborne T J and Nielsen M A 2002 Phys. Rev. A bf 66 032110
|
[21] |
Shan C J, Cheng W W, Liu T K, Huang Y X and Li H 2008 Chin. Phys. B 17 4002
|
[22] |
Hu M G, Xue K and Ge M L 2008 Phys. Rev. A bf 78 052324
|
[23] |
Wang X 2001 Phys. Rev. A 64 012313
|
[24] |
Kamta G L and Starace A F 2002 Phys. Rev. Lett. bf 88 107901
|
[25] |
dos Santos F B M, Dias R M and Mac^edo A M S 2009 Phys. Rev. A 79 032329
|
[26] |
Wang Y, Cao J and Wang Y 2005 Phys. Lett. A 342 375
|
[27] |
Asoudeh M and Karimipour V 2005 Phys. Rev. A bf 71 022308
|
[28] |
Zhang G F and Li S S 2005 Phys. Rev. A bf 72 034302
|
[29] |
Sun Y, Chen Y and Chen H 2003 Phys. Rev. A bf 68 044301
|
[30] |
Qin M, Xu S L, Tao Y J and Tian D P 2008 Chin. Phys. B 17 2800
|
[31] |
Li D C and Cao Z L 2009 Chin Phys. Lett. bf 26 020309
|
[32] |
Li D C, Wang X P and Cao Z L 2008 J. Phys.: Condens. Matter 20 325229
|
[33] |
Yang G H and Zhou L 2008 Commun. Theor. Phys. bf 49 1635
|
[34] |
Wu K D, Zhou B and Cao W Q 2007 Phys. Lett. A 362 381
|
[35] |
Zhang R and Zhu S 2006 Phys. Lett. A 348 110
|
[36] |
Su X Q and Wang A M 2007 Phys. Lett. A 369 196
|
[37] |
Aky"uz C, Aydiner E and M"ustecapliouglu "O E 2008 Opt. Commun. 281 5271
|
[38] |
Ma X S 2008 Opt. Commun. 281 484
|
[39] |
Choi K Y, Matsuda Y H and Nojiri H 2006 Phys. Rev. Lett. 96 107202
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|