Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 014207    DOI: 10.1088/1674-1056/19/1/014207
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Wave function for the squeezed atomic coherent state in entangled state representation and some of its applications

Wang Ji-Suo(王继锁)a)b)†, Meng Xiang-Guo(孟祥国)b), and Liang Bao-Long(梁宝龙)b)
a College of Physics and Engineering, Qufu Normal University, Qufu 273165, China; b Department of Physics, Liaocheng University, Liaocheng 252059, China
Abstract  Based on the Einstein, Podolsky, and Rosen (EPR) entangled state representation, this paper introduces the wave function for the squeezed atomic coherent state (SACS), which turns out to be just proportional to a single-variable ordinary Hermite polynomial of order 2j. As important applications of the wave function, the Wigner function of the SACS and its marginal distribution are obtained and the eigenproblems of some Hamiltonians for the generalized angular momentum system are solved.
Keywords:  squeezed atomic coherent state      entangled state representation      Wigner function      eigenvalue and eigenstate  
Received:  06 April 2009      Revised:  08 May 2009      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  02.10.Ud (Linear algebra)  
  03.65.Fd (Algebraic methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. Y2008A23).

Cite this article: 

Wang Ji-Suo(王继锁), Meng Xiang-Guo(孟祥国), and Liang Bao-Long(梁宝龙) Wave function for the squeezed atomic coherent state in entangled state representation and some of its applications 2010 Chin. Phys. B 19 014207

[1] Arecchi F T, Courtens E, Gilmore R and Thomas H 1972 Phys. Rev. A 6 2211
[2] Agarwal G S 1981 Phys. Rev. A 24 2889
[3] Dowling J P, Agarwal G S and Schleich W P 1994 Phys. Rev. A 49 4101
[4] Chritopher C G and Mark P 2008 Phys. Lett. A 372 6480
[5] Fan H Y and Chen J 2003 Eur. Phys. J.D 23 437
[6] Fan H Y, Li C and Jiang Z H 2004 Phys. Lett. A 327 424
[7] Wineland D J, Bollinger J J, Itano W M, Moore F L and Heinzen D J 1992 Phys. Rev. A 46 6797
[8] Wineland D J, Bollinger J J, Itano W M and Heinzen D J 1994 Phys. Rev. A 50 67
[9] Ocak S B and Altanhan T 2003 Phys. Lett. A 308 17
[10] Arvieu R and Rozmej P 1999 Eur. Phys. J. A 5 357
[11] Feng P and Bai H 2003 Physica B 348 306
[12] Fiederling R, Keim M, Reuscher G, Ossau W, Schmidt G, Waag A and Molenkamp L W 1999 Nature 402 787
[13] Lin W Z, Fujimoto L G, Ippen E P and Logan R A 1987 Appl. Phys. Lett. 50 124
[14] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[15] Deb R N, Nayak N and Dutta-Roy B 2005 Eur. Phys. J.D 33 149
[16] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[17] Fan H Y and Ye X 1995 Phys. Rev. A 51 3343
[18] Fan H Y, Zaidi H R and Klauder J R 1987 Phys. Rev. D 35 1831
[19] Meng X G, Wang J S, Liang B L and Li H Q 2008 Chin. Phys. B 17 1791
[20] Meng X G, Wang J S and Li H Q 2008 Chin. Phys. B 17 2973
[21] Radcliffe J M 1971 J. Phys. A: Gen. Phys. 4 313
[22] Schwinger J 1965 Quantum Theory of Angular Momentum (New York: Academic Press)
[23] Fan H Y 2001 Entangled State Representations in Quantum Mechanics and Their Applications (Shanghai: Shanghai Jiao Tong University Press) (in Chinese)
[1] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[2] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[3] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[4] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[5] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[6] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[7] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[8] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[9] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[10] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[11] Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach
N Asili Firouzabadi, M K Tavassoly, M J Faghihi. Chin. Phys. B, 2015, 24(6): 064204.
[12] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[13] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[14] Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties
Xu Xue-Xiang (徐学翔), Yuan Hong-Chun (袁洪春), Wang Yan (王燕). Chin. Phys. B, 2014, 23(7): 070301.
[15] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng (陈锋), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030304.
No Suggested Reading articles found!