Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 014206    DOI: 10.1088/1674-1056/19/1/014206
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Entropy squeezing of an atom with a k-photon in the Jaynes--Cummings model

Kang Dong-Peng(康冬鹏)a), Liao Qing-Hong(廖庆洪) a), Ahamd Muhammad Ashfaqb), Wang Yue-Yuan(王月媛)a), and Liu Shu-Tian(刘树田) a)†
a Department of Physics, Harbin Institute of Technology, Harbin 150001, China; b COMSATS Institute of Information Technology, Department of Physics, Lahore 54000, Pakistan
Abstract  The entropy squeezing of an atom with a k-photon in the Jaynes--Cummings model is investigated. For comparison, we also study the corresponding variance squeezing and atomic inversion. Analytical results show that entropy squeezing is preferable to variance squeezing for zero atomic inversion. Moreover, for initial conditions of the system the relation between squeezing and photon transition number is also discussed. This provides a theoretical approach to finding out the optimal entropy squeezing.
Keywords:  Jaynes--Cumming model      entropy squeezing      variance squeezing      atomic inversion  
Received:  21 March 2009      Revised:  01 June 2009      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  32.80.-t (Photoionization and excitation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674038 and 10604042), and the National Basic Research Program of China (Grant No. 2006CB302901).

Cite this article: 

Kang Dong-Peng(康冬鹏), Liao Qing-Hong(廖庆洪), Ahamd Muhammad Ashfaq, Wang Yue-Yuan(王月媛), and Liu Shu-Tian(刘树田) Entropy squeezing of an atom with a k-photon in the Jaynes--Cummings model 2010 Chin. Phys. B 19 014206

[1] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[2] Scully M O and Zubairy M S 1997 Quantum Optics (UK: Cambridge University Press) p193
[3] Rempe G, Walther H and Klein N 1987 Phys. Rev. Lett. 58 353
[4] Vogel W, Welsch D G and Laine L 1987 J. Opt. Soc. Am. B 4 1633
[5] Singh S 1982 Phys. Rev. A 25 3206
[6] Font J L, Fernandez-Soler J J, Vilaseca R and Gauthier D J 2005 Phys. Rev. A 72 063810
[7] Kuang L M, Chen X and Ge M L 1995 Phys. Rev. A 52 1857
[8] Gerry C C and Moyer P J 1988 Phys. Rev. A 38 5665
[9] Kien F L, Kozierowski M and Quang T 1988 Phys. Rev. A 38 263
[10] Mir M A and Razmi M S K 1991 Phys. Rev. A 44 6071
[11] Abdel-Hafez A M and Obada A S F 1991 Phys. Rev. A 44 6017
[12] Mahran M H and Obada A S F 1990 Phys. Rev. A 42 1718
[13] Agarwal G S and Puri R R 1990 Phys. Rev. A 41 3782
[14] Li X S, Lin D L and George T F 1989 Phys. Rev. A 40 2504
[15] Ashraf M M and Razmi M S K 1992 Phys. Rev. A 45 8121
[16] Wodkiewicz K, Knight P L, Buckle S J and Barnett S M 1987 Phys. Rev. A 35 2567
[17] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138
[18] Wineland D J, Bollinger J J and Itano W M 1994 Phys. Rev. A 50 67
[19] Sorensen A and Molmer K 1999 Phys. Rev. Lett. 83 2274
[20] Sorensen J L, Hald J and Polzik E S 1998 Phys. Rev. Lett. 80 3487
[21] Walls D F and Zoller P 1981 Phys. Rev. Lett. 47 709
[22] Fang M -F, Zhou P and Swain S 2000 J. Mod. Opt. 47 1043
[23] Sanchez-Ruiz J 1995 Phys. Lett. A 201 125
[24] Sanchez-Ruiz J 1998 Phys. Lett. A 244 233
[25] Liu X J, Zhou B J, Fang M F and Zhou Q P 2006 Acta Phys. Sin. 55 704 (in Chinese)
[26] Abdalla M S, Hassan S S and Abdel-Aty M 2005 Opt. Commun. 244 431
[27] Abdel-Aty M, Abdalla M S and Obada A S F 2002 J. Opt. B: Quantum Semiclass. Opt. 4 134
[28] El-Orany F A A, Wahiddin M R B and Obada A S F 2008 Opt. Commun. 281 2854
[29] Huo W Y and Long G L 2007 Commun. Theor. Phys. 48 1029
[30] Obada A S F, Wahiddin M R B and Abdel-Aty M 2008 Opt. Commun. 281 6019
[31] Huo W Y and Long G L 2008 New. J. Phys. 10 013026
[32] Zipper E, Kurpas M, Szelg M, Dajka J and Szopa M 2006 Phys. Rev. B 74 125426.
[33] Huo W Y and Long G L 2008 Appl. Phys. Lett. 92 133102
[34] Etaki S, Poot M, Mahboob I, Onomitsu K, Yamaguchi H and Van der Zant H S J 2008 Nat. Phys. 4 785
[35] Shore B W and Knight P L 1993 J. Mod. Opt. 40 1195
[1] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[2] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[3] Entropy squeezing for three-level atom interacting with a single-mode field
Fei-Fan Liu(刘非凡), Mao-Fa Fang(方卯发), Xiong Xu(许雄). Chin. Phys. B, 2019, 28(6): 060304.
[4] Generation of sustained optimal entropy squeezing of a two-level atom via non-Hermitian operation
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(11): 114207.
[5] Entropy squeezing and atomic inversion in the k-photon Jaynes-Cummings model in the presence of the Stark shift and a Kerr medium:A full nonlinear approach
H R Baghshahi, M K Tavassoly, A Behjat. Chin. Phys. B, 2014, 23(7): 074203.
[6] Preparation of optimal entropy squeezing state of atomic qubit inside the cavity via two-photon process and manipulation of atomic qubit outside the cavity
Zhou Bing-Ju (周并举), Peng Zhao-Hui (彭朝晖), Jia Chun-Xia (贾春霞), Jiang Chun-Lei (姜春蕾), Liu Xiao-Juan (刘小娟). Chin. Phys. B, 2014, 23(12): 120305.
[7] Single-atom entropy squeezing and quantum entanglement in Tavis--Cummings model with atomic motion
Zou Yan (邹艳). Chin. Phys. B, 2010, 19(7): 074207.
[8] Preparation and control of atomic optimal entropy squeezing states for a moving two-level atom under control of the two-mode squeezing vacuum fields
Zhou Bing-Ju(周并举), Liu Yi-Man(刘一曼), Zhao Ming-Zhuo(赵明卓), and Liu Xiao-Juan(刘小娟). Chin. Phys. B, 2010, 19(12): 124207.
[9] Quantum entanglement between the two-mode fields and atomic entropy squeezing in the system of a moving atom interacting with two-mode entangled coherent field
Zou Yan(邹艳) and Li Yong-Ping(李永平). Chin. Phys. B, 2009, 18(7): 2794-2800.
[10] Optimal entropy squeezing sudden generation and its control for an effective two-level moving atom entanglement with the two-mode coherent fields
Liu Xiao-Juan(刘小娟), Zhou Yuan-Jun (周元俊), and Fang Mao-Fa(方卯发). Chin. Phys. B, 2009, 18(6): 2307-2313.
[11] Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence
Zhang Jian(张剑), Shao Bin(邵彬), and Zou Jian(邹健). Chin. Phys. B, 2009, 18(4): 1517-1527.
[12] The entropic squeezing of superposition of two arbitrary coherent states
Lu Dao-Ming(卢道明). Chin. Phys. B, 2008, 17(2): 618-623.
[13] Entropy squeezing of a moving atom and control of noise of the quantum mechanical channel via the two-photon process
Zhou Bing-Ju(周并举), Liu Xiao-Juan(刘小娟), Zhou Qing-Ping(周清平), and Liu Ming-Wei(刘明伟). Chin. Phys. B, 2007, 16(2): 420-428.
[14] Atomic dynamics in the mode-mode competition system
Wu Qin (吴琴), Fang Mao-Fa (方卯发). Chin. Phys. B, 2004, 13(9): 1432-1437.
[15] Entropy squeezing for a two-level atom in the Jaynes-Cummings model with an intensity-depend coupling
Li Chun-Xian (李春先), Fang Mao-Fa (方卯发). Chin. Phys. B, 2003, 12(3): 294-299.
No Suggested Reading articles found!