|
|
Solvent effects on the S0→S2 absorption spectra of $\beta$-carotene |
Liu Wei-Long(刘伟龙)a), Wang De-Min(王德敏)a), Zheng Zhi-Ren(郑植仁)a)† , Li Ai-Hua(李艾华)a), and Su Wen-Hui(苏文辉)a)b) |
a Center for Condensed-Matter Science and Technology, Harbin Institute of Technology, Harbin 150001, China; b International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, China |
|
|
Abstract Absorption spectra of $\beta$ -carotene in 31 solvents are measured in ambient conditions. Solvent effects on the 0--0 band energy, the bandwidth, and the transition moment of the S0 → S2 transition are analysed. The discrepancies between published results of the solvent effects on the 0--0 band energy are explained by taking into account microscopic solute-solvent interactions. The contributions of polarity and polarizability of solvents to 0--0 band energy and bandwidth are quantitatively distinguished. The 0--0 transition energy of the S2 state at the gas phase is predicted to locate between 23000 and 23600 cm-1.
|
Received: 25 May 2009
Revised: 08 July 2009
Accepted manuscript online:
|
PACS:
|
78.40.Dw
|
(Liquids)
|
|
61.25.Em
|
(Molecular liquids)
|
|
Fund: Project supported by the National
Natural Science Foundation of China (Grant No. 10774034). |
Cite this article:
Liu Wei-Long(刘伟龙), Wang De-Min(王德敏), Zheng Zhi-Ren(郑植仁), Li Ai-Hua(李艾华), and Su Wen-Hui(苏文辉) Solvent effects on the S0→S2 absorption spectra of $\beta$-carotene 2010 Chin. Phys. B 19 013102
|
[1] |
Cramer C J and Trular D G 1999 Chem. Rev. 99 2161
|
[2] |
Li X Y and Fu K X 2005 J. Theo. & Comp. Chem. 4 907
|
[3] |
Han Q Z, Geng C Y, Zhao Y H, Qi C S and Wen H 2008 Acta Phys. Sin. 57 96 (in Chinese)
|
[4] |
Onsager L 1936 J. Am. Chem. Soc. 58 1486
|
[5] |
Guo Y H, Sun Y H, Tao L M, Zhao K and Wang C K 2005 Chin. Phys. 14 2202
|
[6] |
Bayliss N S 1950 J. Chem. Phys. 18 292
|
[7] |
Polívka T and Sundstr?m V 2004 Chem. Rev. 104 2021
|
[8] |
Zhao X H, Ma F, Wu Y S, Ai X C and Zhang J P 2008 Acta Phys. Sin. 57 298 (in Chinese)
|
[9] |
Liu W M, Liu Y, Liu K J, Yan Y L, Guo L J, Xu C H and Qian S X 2006 Chin. Phys. 15 1725
|
[10] |
Andersson P O, Gillbro T, Ferrguson L and Cogdell R J 1991 Photochem. Photobiol. 54 353
|
[11] |
Kuki M, Nagae H, Cogdell R J, Shimada K and Koyama Y 1994 Photochem. Photobiol. 59 116
|
[12] |
Nagae H, Kuki M, Cogdell R J and Koyama Y 1994 J. Chem. Phys. 101 6750
|
[13] |
Reng I, Grondelle R V and Dekker J P 1996 J. Photochem. Photobiol. A 96 109
|
[14] |
Laurence C, Nicolet P, Dalati M T, Abboud J L M and Notario R 1994 J. Phys. Chem. 98 5807
|
[15] |
Abe T, Abboud J L M, Belio F, Bosch E, Garcia J I, Mayoral J A, Notario R, Ortega J and Rosés M 1998 J. Phys. Org. Chem. 11 193
|
[16] |
Chen Z G, Lee C, Lenzer T and Oum K 2006 J. Phys. Chem. A 110 11291
|
[17] |
Torii H and Tasumi M 1993 J. Chem. Phys. 98 3697
|
[18] |
Frank H A, Bautista J A, Josue J, Pendon Z, Hiller R G, Sharples F P, Gosztola D and Wasielewski M R 2000 J. Phys. Chem. B 104 4569
|
[19] |
Christensen R L and Kohler B E 1973 Photochem. Photobiol. 18] 293
|
[20] |
Christensen R L, Goyette M, Gallagher L, Duncan J, DeCoster B, Lugtenburg J, Jansen F J and van der Hoef I 1999 J. Phys. Chem. A 103 2399
|
[21] |
Liu W L, Zheng Z R, Zhu R B, Liu Z G, Xu D P, Yu H M, Wu W Z, Li A H, Yang Y Q and Su W H 2007 J. Phys. Chem. A 111 10044
|
[22] |
Liu W L, Zheng Z R, Dai Z F, Liu Z G, Zhu R B, Wu W Z, Li A H, Yang Y Q and Su W H 2008 J. Chem. Phys. 128 124501-1
|
[23] |
Craft N E and Soares J H 1992 J. Agric. Food. Chem. 40 431
|
[24] |
Yang X Z, Li P, Dai S H, Wu D C, Li R X, Yang J H and Xiao H B 2005 Spectrosc. Spectr. Anal. 25 1830 (in Chinese)
|
[25] |
Dai S H, Li P, Yang, X Z, Wu D C, Li R X, Yang J H and Xiao H B 2006 Acta Opt. Sin. 26 141 (in Chinese)
|
[26] |
Wang P, Nakamura R, Kanematsu Y, Koyama Y, Nagae H, Nishio T, Hashimoto H and Zhang J P 2005 Chem. Phys. Lett. 410 108
|
[27] |
Mukamel S, Abe S, Yan Y J and Islampour R 1985 J. Phys. Chem. 89 201
|
[28] |
Yan Y J and Mukamel S 1986 J. Chem. Phys. 85 5908
|
[29] |
Torii H and Tasumi M 1990 J. Phys. Chem. 94 227
|
[30] |
Nicol M, Swain J, Shum Y Y, Merin R and Chen R H H 1968 J. Chem. Phys. 48 3587
|
[31] |
Myers A B and Birge R R 1980 J. Chem. Phys. 73 5314
|
[32] |
Macpherson A N and Gillbro T 1998 J. Phys. Chem. A 102 5049
|
[33] |
Wang C K, Xing X J, Huang X M and Gao Y 2007 Chin. Phys. 16 3323
|
[34] |
Mchale J L 2001 Acc. Chem. Res. 34 265
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|