Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 076105    DOI: 10.1088/1674-1056/25/7/076105
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Influence of nitrogen and magnesium doping on the properties of ZnO films

Dong-hua Li(李东华)1, Hui-Qiong Wang(王惠琼)1,2,3, Hua Zhou(周华)1, Ya-Ping Li(李亚平)1, Zheng Huang(黄政)1, Jin-Cheng Zheng(郑金成)1,2, Jia-Ou Wang(王嘉鸥)4, Hai-jie Qian(钱海杰)4, Kurash Ibrahim(奎热西)4, Xiaohang Chen(陈晓航)1, Huahan Zhan(詹华瀚)1, Yinghui Zhou(周颖慧)1, Junyong Kang(康俊勇)1
1 Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China;
2 Xiamen University Malaysia Campus, Sepang, Selangor 439000, Malaysia;
3 State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China;
4 Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  Undoped ZnO and doped ZnO films were deposited on the MgO(111) substrates using oxygen plasma-assisted molecular beam expitaxy. The orientations of the grown ZnO thin film were investigated by in situ reflection high-energy electron diffraction and ex situ x-ray diffraction (XRD). The film roughness was measured by atomic force microscopy, which was correlated with the grain sizes determined by XRD. Synchrotron-based x-ray absorption spectroscopy was performed to study the doping effect on the electronic properties of the ZnO films, compared with density functional theory calculations. It is found that, nitrogen doping would hinder the growth of thin film, and generate the NO defect, while magnesium doping promotes the quality of nitrogen-doped ZnO films, inhibiting (N2)O production and increasing nitrogen content.
Keywords:  ZnO      nitrogen      magnesium      x-ray absorption spectra  
Received:  28 December 2015      Revised:  02 March 2016      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  61.05.cj (X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)  
  61.05.js (X-ray photoelectron diffraction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204253, U1332105, 61227009, and 91321102), the Fundamental Research Funds for Central Universities, China (Grant No. 20720160020), and the National High Technology Research and Development Program of China (Grant No. 2014AA052202).
Corresponding Authors:  Hui-Qiong Wang     E-mail:  hqwang@xmu.edu.cn

Cite this article: 

Dong-hua Li(李东华), Hui-Qiong Wang(王惠琼), Hua Zhou(周华), Ya-Ping Li(李亚平), Zheng Huang(黄政), Jin-Cheng Zheng(郑金成), Jia-Ou Wang(王嘉鸥), Hai-jie Qian(钱海杰), Kurash Ibrahim(奎热西), Xiaohang Chen(陈晓航), Huahan Zhan(詹华瀚), Yinghui Zhou(周颖慧), Junyong Kang(康俊勇) Influence of nitrogen and magnesium doping on the properties of ZnO films 2016 Chin. Phys. B 25 076105

[1] Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H, and Segawa Y 1998 Appl. Phys. Lett. 72 3270
[2] Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogăn S, Avrutin V, Cho S J and Morkoç H 2005 J. Appl. Phys. 98 041301
[3] Look D C, Claflin B, Alivov Y I and Park S J 2004 Phys. Stat. Sol. (a) 201 2203
[4] Walle C G V D 2000 Phys. Rev. Lett. 85 1012
[5] Prze'zdziecka E, Kami'nska E, Korona K P, Dynowska E, WDobrowolski, Jakiela R, Klopotowski L and Kossut J 2007 Semi. Sci. Tech. 22 10
[6] Yao B, Xie Y P, Cong C X, Zhao H J, Sui Y R, Yang T and He Q 2009 J. Phys. D: Appl. Phys. 42 015407
[7] Xiu F X, Yang Z, Mandalapu L J, Zhao D T and Liu J L 2005 Appl. Phys. Lett. 87 152101
[8] Tang L, Wang B, Zhang Y and Gu Y 2001 Mater. Sci. Eng. B 176 548
[9] Park C H, Zhang S B and Wei S H 2002 Phys. Rev. B. 66 073202
[10] Gai Y Q, Yao B, Wei Z P, Li Y F, Lu Y M, Shen D Z, Zhang J Y, Zhao D X, Fan X W, Li J and Xia J B 2008 Appl. Phys. Lett. 92 062110
[11] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2$k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Austria: Vienna University of Technology)
[12] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[13] Bozovic I, Eckstein J N, Bozovic N A O and Krauss A R eds. 2001 In Situ Real-Time Characterization of Thin Films (New York: John Wiley and Sons) p. 29
[14] Chao L C, Shih Y R, Li Y K, Chen J W, Wu J D and Ho C H 2010 Appl. Surf. Sci. 256 4153
[15] Sun S B, Chang X T, Li X J and Li Z J 2013 Ceram. Int. 39 5197
[16] Patterson A L 1939 Phys. Rev. 56 978
[17] Guo J H, Vayssieres L, Persson C, Ahuja R, Johansson B and Nordgren J 2002 J. Phys.: Condens. Matter 14 6969
[18] Stöhr J, 1992 NEXAFS Spectroscopy (Berlin: Springer Verlag) p. 86
[19] Kapoor R and Oyama S T 1995 Catal. Lett. 34 179
[20] Revel R, Bazin D, Parent P and Laffon C 2001 Catal. Lett. 74 189
[21] Zhang W, Sze K H, Brion C E, Tong X M and Lee J M 1990 Chem. Phys. 140 265
[22] Adachi J I, Kosugi N, Shigemasa E and Yagishita A 1995 J. Chem. Phys. 102 7369
[23] Limpijumnong S, Li X, Wei S H and Zhang S B 2005 Appl. Phys. Lett. 86 211910
[24] Futsuhara M, Yoshioka K and Takai O 1998 Thin Solid Films 322 274
[25] Yao B, Zhang Z Z, Wang X H, Wei Z P, Li B H, Lv Y M, Fan X W, Guan LX, Xing G Z, Cong C X and Xie Y P 2006 J. Appl. Phys. 99 123510
[26] Boyd K J, Marton D, Todorov S S, et al. 1995 J. Vac. Sci. Technol. A 13 2110
[27] Quiro's C, Go'mez-García J, Palomares F J, Soriano L, Elizalde E and Sanz J M 2000 Appl. Phys. Lett. 77 803
[28] Wahl B, Woke D and Makromol 1975 Makromol. Chem. 176 849
[29] Yoshida T and Sawada S 1974 Bull. Chem. Soc. Jpn. 47 50
[30] Souto S and Alvarez F 1997 Appl. Phy. Lett. 70 1539
[31] Kannan P and John S A 2011 Electrochim. Acta 56 7029
[32] Feng J, Long C, Zheng Y, Zhang F W and Fan Y D 1995 J. Cryst. Growth 147 333
[33] Jeong H S and Kim C M 2007 Bull. Korean Chem. Soc. 28 413
[34] Moulder J F, Stickle W F, Sobol P E and Bomben K D 1992 Handbook of x-ray Photoelectron Spectroscopy (Minnesota: Perkin-Elmer) p. 253
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[3] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[4] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[5] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[6] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[7] Nitrogen-tailored quasiparticle energy gaps of polyynes
Kan Zhang(张侃), Jiling Li(李继玲), Peitao Liu(刘培涛), Guowei Yang(杨国伟), and Lei Shi(石磊). Chin. Phys. B, 2022, 31(12): 123102.
[8] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[9] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[10] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[11] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[12] Polymorph selection of magnesium under different pressures: A simulation study
Wei Liu(刘维), Boqiang Wu(吴博强), Ze'an Tian(田泽安), Yunfei Mo(莫云飞), Tingfei Xi(奚廷斐), Zhiyi Wan(万子义), Rangsu Liu(刘让苏), and Hairong Liu(刘海蓉). Chin. Phys. B, 2022, 31(1): 016103.
[13] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[14] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[15] Single-channel vector magnetic information detection method based on diamond NV color center
Qin-Qin Wang(王琴琴), Rui-Rong Wang(王瑞荣), Jin-Ping Liu(刘金萍), Shao-Zhuo Lin(林绍卓), Liang-Wei Wu(武亮伟), Hao Guo(郭浩), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Jun Tang(唐军), Zong-Min Ma(马宗敏), and Jun Liu (刘俊). Chin. Phys. B, 2021, 30(8): 080701.
No Suggested Reading articles found!