Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 054205    DOI: 10.1088/1674-1056/19/5/054205
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Steady-state analysis of three-photon absorption spectra via density-matrix method in a three-coupled-quantum-well nanostructure

Deng Li(邓黎)
School of Basic Science, East China Jiaotong University, Nanchang 330013, China
Abstract  We numerically simulate three-photon absorption spectra in a three-coupled-quantum-well nanostructure interacting with a pump field, a coherent coupling field, and a probe field. We find that the three-photon absorption spectra can be dramatically influenced due to the intensities of the coupling field and pump field changing under the three-photon resonance condition. The effect of the frequency detuning of the pump field on the three-photon absorption spectra is also discussed. The study in our case is much more practical than the study in the case of its atomic counterpart in the sense of flexible design and the wide adjustable parameters. Thus it may open up some new possibilities for technological applications in optoelectronics and solid-state quantum information science.
Keywords:  three-coupled-quantum-well      absorption spectra      three-photon resonance  
Received:  23 August 2009      Revised:  04 October 2009      Accepted manuscript online: 
PACS:  78.67.De (Quantum wells)  
  78.30.-j (Infrared and Raman spectra)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  61.46.-w (Structure of nanoscale materials)  
Fund: Project supported by the Natural Science Foundation of Jiangxi, China (Grant No.~2008GQW0017), the Scientific Research Foundation of Jiangxi Provincial Department of Education (Grant No.~GJJ09504), and the Foundation of Talent of Jinggang of Jiangxi Province, China (Grant No.~2008DQ00400).

Cite this article: 

Deng Li(邓黎) Steady-state analysis of three-photon absorption spectra via density-matrix method in a three-coupled-quantum-well nanostructure 2010 Chin. Phys. B 19 054205

[1] Ding J W, She Y C and Wang D L 2009 Acta Phys. Sin. 58 3198 (in Chinese)
[2] Wu Y and Yang X 2004 Opt. Lett. 29 839[2a] Cheng G P, Ke S S, Li G X and Zhang L H 2007 Acta Phys. Sin. 56 830 (in Chinese)
[3] Wu Y, Saldana J and Zhu Y 2003 Phys. Rev. A 67 013811
[4] Li J H, Chen A X, Liu J B and Xie X T 2006 Chin. Phys. 15 721[4a] Chen A X, Chen D H and Wang Z P 2009 Acta Phys. Sin. 58 5450 (in Chinese)
[5] Wu Y 2005 Phys. Rev. A 71 053820
[6] Wu Y and Yang X 2000 Phys. Rev. A 62 013603
[7] Chen A X, Qiu W Y and Wang Z P 2008 Chin. Phys. B 17 4204
[8] Zhang Y, Anderson B and Xiao M 2008 Phys. Rev. A 77 061801.
[9] Deng J L, He H J, Hu Z F, Ma Y S and Wang Y Z 2009 Chin. Phys. B 18 199
[10] Wu Y and Yang X 2005 Phys. Rev. A 71 053806 Guo G C, Xiao S, Shi B S and W F Y 2008 Chin. Phys. B 17 1798
[11] Harris S E 1997 Phys. Today 50 36
[12] Harris S E and Hau L V 1999 Phys. Rev. Lett. 82 4611
[13] Chen A X, Wang Z P and Chen D H 2009 Sci. in China Ser. G 52 524
[14] Wu Y and Deng L 20004 Phys. Rev. Lett. 93 143904
[15] Jiang B, Ju Y L, Li L, Wang Y Z and Zhang X L 2009 Acta Phys. Sin. 58 964 (in Chinese)
[16] Chen A X, Deng L and Wu Q P 2007 Chin. Phys. 16 3386[16a] Li J H, Luo J M, Yang W X and Zhan Z M 2006 Chin. Phys. 15 132
[17] Wu H, Xiao M and Gea-Banacloche J 2008 Phys. Rev. A 78 041802
[18] Chen A X, Wang Z P, Chen D H and Xu Y Q 2009 Chin. Phys. B 18 1072
[19] Goppert-Mayer M 1931 Ann. Phys. 9 273
[20] Plakhotnik T, Walser D, Pirotta M, Renn A and Wild U P 1996 Science 271 1703
[21] Cesar C L, Fried D G, Killian T C, Polcyn A D, Sandberg J C, Yu I A, Greytak T J, Kleppner D and Doyle J M 1996 Phys. Rev. Lett. 77 255
[22] Agarwal G S and Harshawardhan W 1996 Phys. Rev. Lett. 77 1039
[23] Gao J Y, Yang S H, Wang D, Guo X Z, Chen K X, Jiang Y and Zhao B 2000 Phys. Rev. A 61 02340
[24] Yan M, Rickey E G and Zhu Y 2001 Phys. Rev. A 64 043807
[25] Mulchan N, Ducreay D G, Pina R, Yan M and Zhu Y F 2000 J. Opt. Soc. Am. B 17 820
[26] He J, Qu Y, Li H, Mi J and Ji W 2005 Opt. Express 13 9235
[27] Imamoglu M and Ram R J 1994 Opt. Lett. 19 1744
[28] Phillips M and Wang H 2003 Opt. Lett. 28 831
[29] Li J H 2007 Phys. Rev. B 75 155329
[30] Sun H, Gong S, Niu Y, Jin S, Li R and Xu Z 2006 Phys. Rev. B 74 155314
[31] Yang W X, Hou J M and Lee R K 2008 Phys. Rev. A 77 033838[31a] Chen A X, Xu Y Q, Deng L and Zhou S Y 2009 Chin. Phys. B 18 1528
[32] Yang W X, Hou J M, Lin Y Y and Lee R K 2009 Phys. Rev. A 79 033825
[33] Hao X, Li J and Yang X 2009 Opt. Commun. 282 3339
[34] Serapiglia G B, Paspalakis E, Sirtori C, Vodopyanov K L and Phillips C C 2000 Phys. Rev. Lett. 84 1019
[35] Dynes J F, Frogley M D, Beck M, Faist J and Phillips C C 2005 Phys. Rev. Lett. 94 157403
[1] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[2] Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance
Yinlu Gao(高寅露), Kai Cheng(程开), Xue Jiang(蒋雪), and Jijun Zhao(赵纪军). Chin. Phys. B, 2022, 31(11): 117304.
[3] Modulation and mechanism of ultrafast transient spectroscopy based on dimethylamino-carbaldehyde derivatives
Tong-xing Jin(金桐兴), Jun-yi Yang(杨俊义), Yu Fang(方宇), Yan-bing Han(韩艳兵), Ying-lin Song(宋瑛林). Chin. Phys. B, 2018, 27(5): 054208.
[4] Influence of nitrogen and magnesium doping on the properties of ZnO films
Dong-hua Li(李东华), Hui-Qiong Wang(王惠琼), Hua Zhou(周华), Ya-Ping Li(李亚平), Zheng Huang(黄政), Jin-Cheng Zheng(郑金成), Jia-Ou Wang(王嘉鸥), Hai-jie Qian(钱海杰), Kurash Ibrahim(奎热西), Xiaohang Chen(陈晓航), Huahan Zhan(詹华瀚), Yinghui Zhou(周颖慧), Junyong Kang(康俊勇). Chin. Phys. B, 2016, 25(7): 076105.
[5] TDDFT study of excitation of water molecules with short laser pulses
Wang Zhi-Ping (王志萍), Wu Ya-Min (吴亚敏), Zhang Xiu-Mei (张秀梅), Lu Chao (鲁超). Chin. Phys. B, 2013, 22(7): 073301.
[6] Manifestation of external field effect in time-resolved photo-dissociation dynamics of LiF
Meng Qing-Tian (孟庆田), A. J. C. Varandas. Chin. Phys. B, 2013, 22(7): 073303.
[7] Computer study of the water–ammonia clusters formation and their dielectric properties
Alexander Galashev. Chin. Phys. B, 2013, 22(7): 073601.
[8] Solvent effects on the S0S2 absorption spectra of $\beta$-carotene
Liu Wei-Long(刘伟龙), Wang De-Min(王德敏), Zheng Zhi-Ren(郑植仁), Li Ai-Hua(李艾华), and Su Wen-Hui(苏文辉) . Chin. Phys. B, 2010, 19(1): 013102.
[9] Enhanced nonlinear optical absorption of Au/SiO2 nano-composite thin films
Zhao Cui-Hua(赵翠华),Zhang Bo-Ping(张波萍), and Shang Peng-Peng(尚鹏鹏) . Chin. Phys. B, 2009, 18(12): 5539-5543.
[10] The closed-orbit and the photoabsorption spectra of the Rydberg hydrogen atom between two parallel metallic surfaces
Wang De-Hua(王德华). Chin. Phys. B, 2007, 16(3): 692-699.
[11] Ab initio calculations for the absorption spectra and polarizabilities of small sulfur clusters
Bai Yu-Lin(白玉林), Chen Xiang-Rong(陈向荣), Cheng Xiao-Hong(程晓洪), and Yang Xiang-Dong(杨向东). Chin. Phys. B, 2007, 16(3): 700-706.
[12] The influence of nickel dopant on the microstructure and optical properties of SnO2 nano-powders
Liu Chun-Ming(刘春明), Fang Li-Mei(方丽梅), Zu Xiao-Tao(祖小涛), and Zhou Wei-Lie(周伟列). Chin. Phys. B, 2007, 16(1): 95-99.
[13] The closed-orbit and the photoabsorption spectra of lithium atom in varying magnetic fields
Wang De-Hua (王德华), Ding Shi-Liang (丁世良). Chin. Phys. B, 2004, 13(1): 30-35.
No Suggested Reading articles found!