Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(5): 1947-1954    DOI: 10.1088/1674-1056/18/5/037
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Monte Carlo simulation of ramified aggregates on hetero-substrates

Qian Chang-Ji(钱昌吉)a), Li Hong(李洪)a), Zhong Rui(钟瑞)a), Luo Meng-Bo(罗孟波)b), and Ye Gao-Xiang(叶高翔)b)
a Department of Physics, Wenzhou University, Wenzhou 325035, China; b Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  We have studied the aggregation of particles on a hetero-substrate consisting of two different substrates A and B with finite surface barriers $E_{\rm AB}$ and $E_{\rm BA}$ between the AB and BA boundaries, respectively. With  the diffusion energy limited aggregation (DELA) model, we find that the number of clusters and the mean radius of gyration of the clusters are dependent on the surface barriers $E_{\rm AB}$ and $E_{\rm BA}$. For the case with  a constant of $E_{\rm BA}$, a series of minima are summarized as $E_{\rm AB }= (E_{0 }- k_{\rm BA }E_{\rm BA })/ k_{\rm AB}$ with $k_{\rm AB}$ and $k_{\rm BA}$ being two integers, for main minima ($k_{\rm BA}=k_{\rm AB}- 1$)  and two local minima ($k_{\rm BA}=k_{\rm AB}$ and $k_{\rm BA}=k_{\rm AB} + 1$) between two neighbouring main minima.
Keywords:  diffusion energy limited aggregation      hetero-substrate      Monte Carlo simulation      cluster  
Received:  29 September 2008      Revised:  27 November 2008      Accepted manuscript online: 
PACS:  68.43.Jk (Diffusion of adsorbates, kinetics of coarsening and aggregation)  
Fund: Project supported by the Natural Science Foundation of Zhejiang province, China(Grant No Y607142) and by the National Natural Science Foundation of China (Grant No 20771092).

Cite this article: 

Qian Chang-Ji(钱昌吉), Li Hong(李洪), Zhong Rui(钟瑞), Luo Meng-Bo(罗孟波), and Ye Gao-Xiang(叶高翔) Monte Carlo simulation of ramified aggregates on hetero-substrates 2009 Chin. Phys. B 18 1947

[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[4] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[5] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[6] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[7] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[10] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[11] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[12] Ultrafast Coulomb explosion imaging of molecules and molecular clusters
Xiaokai Li(李孝开), Xitao Yu(余西涛), Pan Ma(马盼), Xinning Zhao(赵欣宁), Chuncheng Wang(王春成), Sizuo Luo(罗嗣佐), and Dajun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103304.
[13] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[14] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[15] An optimized cluster density matrix embedding theory
Hao Geng(耿浩) and Quan-lin Jie(揭泉林). Chin. Phys. B, 2021, 30(9): 090305.
No Suggested Reading articles found!